
The University of Southern Mississippi

GUIDED GENETIC EVOLUTION:

A FRAMEWORK FOR THE EVOLUTION OF AUTONOMOUS

ROBOTIC CONTROLLERS

by

Khaled El-Sawi

A Dissertation
Submitted to the Graduate Studies Office
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

August 2006

ABSTRACT

GUIDED GENETIC EVOLUTION:

A FRAMEWORK FOR THE EVOLUTION OF AUTONOMOUS

ROBOTIC CONTROLLERS

by

Khaled El-Sawi

August 2006

The development of autonomous robotic agents capable of complex navigation, con-

trol and planning has always been an intriguing area of research. The benefits associated

with the successful implementation of such systems are enormous. However, the creation

of robotic controllers for the efficient manipulation of autonomous agents in real-time is a

very computationally complex task. Such complexity increases exponentially as the struc-

ture of the robot or its surrounding environment increase insophistication. We propose a

new genetic framework labeledGuided Genetic Evolution, or GGE. The guided genetic

evolution platform encapsulates a connectionist model, labeledTrigger Networks, for the

representation of articulated robotic structures as well as the behavioral capabilities of

robotic agents. The evolution of trigger networks is based upon genetic programming

methodologies with the inclusion of specialized algorithms for the evolution of articu-

lated robotic controllers. Evolutionary guidance constructs are also introduced as means

for minimizing the search space associated with the controlproblem and achieving suc-

cessful evolution of agents in a shorter time duration. A simulation environment based on

rigid body dynamics is utilized for the functional modelingof system interactions. The

simulation environment allows for the utilization of minimal agent representation in order

to achieve reliable fitness allowing for the further expansion of the research into the real

domain.

Copyright c© by
Khaled El-Sawi

2006

The University of Southern Mississippi

GUIDED GENETIC EVOLUTION:

A FRAMEWORK FOR THE EVOLUTION OF AUTONOMOUS

ROBOTIC CONTROLLERS

by

Khaled El-Sawi

A Dissertation
Submitted to the Graduate Studies Office
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Approved:

Director

University Coordinator, Graduate Studies

August 2006

TO MY FAMILY

ii

ACKNOWLEDGMENTS

I would like to extend my gratitude to the thesis director, Dr. Adel Ali, and other

committee members, Dr. Dia Ali, Dr. Beddhu Murali, Dr. Ray Seyfarth, Dr. Andrew

Strelzoff, and Dr. Ras Pandey for their support, insight andassistance which have been

of extreme value to me throughout the duration of this thesis.

I would like to specially thank Dr. Adel Ali for his support over the many years I

have known him. The attention, friendship and continuous support he has given me over

the years are things I am proud of and will always continue to treasure. I would also

like to deeply thank Dr. Dia Ali who has always exemplified a rare image of caring and

selfless giving. Dr. Dia’s continuous support and positive influence have been beyond

words or description. I am also extremely grateful for Dr. Murali’s insight and critical

view which have helped me in continuously improving my research. Dr. Seyfarth has

been of tremendous assistance to me, and he has contributed greatly to the editing of the

manuscript. I am quite grateful for his recommendations andeffort. Dr. Pandey has been

a wonderful force of knowledge and encouragement over the past many months. I am

quite appreciative of his belief in me and his constant support. I am also very thankful

for Dr. Strelzoff. His recommendations have helped me greatly in guiding my work and

formulating ideas for future research.

I would specially like to thank Dr. Rex Gandy and the School ofComputing. Dr.

Gandy’s continued support over the past several years has meant a great deal to me. I am

quite appreciative of all his assistance over the years. I would also like to thank Dr. Joseph

Kolibal for his valuable assistance with Latex and with the formatting of this manuscript.

iii

TABLE OF CONTENTS

ABSTRACT . 1

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . xi

1 INTRODUCTION . 1

1.1 Autonomous Robotic Control 1

1.2 Evolutionary Robotics 2

1.3 Imitation-based Learning 3

1.4 Genetic Programming 5

1.5 Situation and State Awareness 6

1.6 Thesis Overview 7

1.7 Thesis Contribution 7

1.8 Summary 8

2 EVOLUTIONARY ROBOTICS . 9

2.1 Introduction 9

2.2 Evolving in Simulation 10

2.3 Genetic Algorithms 15

2.4 Genetic Encoding 21

2.5 Evolving a Robotic Controller 32

2.6 Conclusion 38

iv

3 GENETIC PROGRAMMING . 40

3.1 Introduction 40

3.2 Components 40

3.3 Structure 42

3.4 Genetic Operators 43

3.5 Implementation 45

3.6 Limitations of Genetic Programming 51

3.7 Gene Expression Programming (GEP) 54

3.8 GEP Genetic Operators 56

3.9 Conclusion 60

4 GUIDED GENETIC EVOLUTION . 61

4.1 Introduction 61

4.2 Genetic Structure 62

4.3 Trigger Networks 66

4.4 Action Types 74

4.5 Trigger Network Evolution 78

4.6 Guiding the Genetic Process 86

4.7 Detailed Algorithm 102

4.8 Conclusion 107

5 TESTING THE EVOLUTION PLATFORM 109

5.1 Introduction 109

5.2 Implementation 109

5.3 Inverted Pendulum 110

5.4 Robotic Arm 118

5.5 Conclusion 127

6 EVOLUTION OF ROBOTIC MOBILITY 130

v

6.1 Introduction 130

6.2 Robotic Structure 130

6.3 Action Specifications 137

6.4 Network Layout 138

6.5 Network Evolution 141

6.6 Conclusion 147

7 CONCLUSIONS AND FUTURE WORK 152

7.1 Summary of Work 152

7.2 Limitations of the Proposed Framework 153

7.3 Future Directions 153

APPENDIX

A RIGID BODY ARTICULATION . 155

A.1 Introduction 155

A.2 Rigid Body Kinematics 156

A.3 Contact Forces 162

A.4 Joint Constraints 167

B AGENT AWARENESS AND PLANNING 170

B.1 Situation Awareness 170

B.2 Situation Calculus 171

B.3 Fluent Calculus 174

B.4 Probabilistic Situation Calculus 175

B.5 Rational Agents 178

B.6 Summary 183

BIBLIOGRAPHY . 185

vi

LIST OF ILLUSTRATIONS

Figure

2.1 Agent-environment causality diagram 11

2.2 State transitions due to motor signal application 13

2.3 Chromosome parameter encoding .. . 15

2.4 The genetic algorithm cycle 16

2.5 Two-point genetic crossover operator 19

2.6 BCGA experimental results .. . 25

2.7 Discretized search space function plot 26

2.8 Discretized search evolution results. 27

2.9 BCGA and RCGA comparative graphs .. 32

2.10 The inverted pendulum environment 33

2.11 Physics-based simulation environment 34

2.12 Search space partitioning for the inverted pendulum problem 36

2.13 Inverted pendulum problem results using rigid body dynamics 37

2.14 Inverted pendulum problem results using numerical approximations 38

3.1 Genetic programming representation 42

3.2 Multiple sub-tree program representation 43

3.3 Genetic programming crossover operator (different parents) 45

3.4 Genetic programming crossover operator (identical parents) 46

3.5 Genetic programming mutation operator 46

3.6 Genetic programming flowchart .. . 47

3.7 Evaluation of the syntax tree 49

3.8 Set of data points for GP fitting 50

3.9 Crossover operation yielding optimum fit 51

vii

3.10 Final data fit using functioncos(x)∗√x . 54

3.11 Expression tree representation 55

3.12 Symbol utilization in the expression tree 56

3.13 Altered expression tree after mutation 57

4.1 Overall genetic process utilized for the structured evolution of individuals . . 62

4.2 Trigger network evolutionary cycle 67

4.3 Trigger vector representations 68

4.4 Multiple T-Net trigger connections 70

4.5 Subnetwork representation 72

4.6 Connectivity of multiple subnetworks 72

4.7 Trigger network representing two internal subnetworks. 73

4.8 Direct angle control of a specific joint axis 75

4.9 Joint control strategy .. . 75

4.10 Components of a PID controller. 76

4.11 Circular trigger vector dependency 79

4.12 Evolution of a robotic arm controller 80

4.13 Trigger network representation of the robotic arm problem. 80

4.14 Evolved trigger network for robotic arm problem. 81

4.15 Evolved robotic arm controller 82

4.16 Evolution progression of the robotic arm problem. 82

4.17 Sphere position control using an evolved PID controller. 84

4.18 Trigger network for the sphere position control problem 85

4.19 Evolution progression of the robotic arm sphere balancing problem. 87

4.20 Four-legged robot placed in the simulation environment 89

4.21 Action classifications for the four legged articulatedstructure 90

4.22 Single behavior in unguided trigger network 91

4.23 Subnetwork connectivity among four behaviors 92

viii

4.24 Guided trigger network for the evolution of the four-legged robot 94

4.25 Evolution progression of the four-legged robot 95

4.26 Four-legged robot forward mobility utilizing a hopping behavior 96

4.27 Guided evolution progression of the four-legged robot. 98

4.28 Subnetworkb1 representing first agent behavior 100

4.29 Subnetworkb2 representing second agent behavior 101

4.30 Subnetworkb3 representing third agent behavior 101

4.31 Subnetworkb4 representing fourth agent behavior 101

4.32 Trigger network for expanded four-legged robot problem 103

4.33 Evolution progression of the four-legged robot 104

5.1 The inverted pendulum environment 110

5.2 Layout for the inverted pendulum trigger network 113

5.3 Guided trigger network for the inverted pendulum problem 114

5.4 Evolutionary results forxmax= 2.5. 116

5.5 Evolutionary results forxmax= 1.0. 117

5.6 Evolution progression of the inverted pendulum problem(PID control) 119

5.7 Evolved guided trigger network for the inverted pendulum(PID control) . . . 119

5.8 Robotic arm problem setup .. 120

5.9 Action specifications for the robotic arm problem 121

5.10 Initial trigger network layout for the robotic arm problem 122

5.11 Desired robotic arm configuration for behaviorsb1 andb2 123

5.12 Best performing individual after 25 generations of evolution 125

5.13 Arm position of best performing individual after 25 generations of evolution . 126

5.14 Best performing individual after 250 generations of evolution 126

5.15 Arm position of best performing individual after 25 generations of evolution . 127

5.16 Final configuration of trigger network for the robotic arm problem 128

5.17 Final robotic arm position after 100 generations of evolution 129

ix

6.1 General articulation structure for biped robot 131

6.2 Biped lower section joint coordinates 132

6.3 Biped middle section joint coordinates 133

6.4 Biped upper section joint coordinates 135

6.5 Polygonal wire frame rendering of the robotic agent 136

6.6 Shaded rendering of the robotic agent 136

6.7 Main phases of the biped walking motion 139

6.8 Main trigger network for biped walking motion 142

6.9 Biped posture after the execution of the evolvedb1 behavior 144

6.10 Biped posture after the execution of the evolvedb2 behavior 145

6.11 Evolution progression of the biped stepping motion over 50 generations . . . 146

6.12 Stepping motion: biped falling during the initial phases of training 148

6.13 Stepping motion: beginning of stepping motion utilizing left foot 149

6.14 Stepping motion: left foot makes contact with the ground 149

6.15 Stepping motion: continued stepping utilizing right foot 150

6.16 Stepping motion: right foot makes contact with the ground 150

6.17 Stepping motion: continued stepping utilizing left foot 151

A.1 Body rotation from body space to world space 157

A.2 Linear velocity and angular velocity of a rigid body. 159

A.3 Penalty method . 162

A.4 Resting contacts .166

A.5 Joint constraints .. 167

A.6 Joint types . 168

B.1 The belief-desire-intention model. 180

B.2 The relationship between belief, goal, and intention-accessible worlds. 181

x

LIST OF TABLES

Table

2.1 Initial random distribution of genetic code 22

2.2 Fitness statistics of initial random population 23

2.3 Second generation of individuals after applying the selection operator. 23

2.4 Fitness statistics of the second generation of individuals 24

2.5 Application of the genetic two-point crossover 24

3.1 Set of data points for GP fitting. 50

3.2 Four representative syntax trees 52

3.3 The fitness evaluation of the four representative syntaxtrees. 53

3.4 The fitness evaluation of the syntax tree representationof cos(x)∗√x. 53

4.1 Functional dependency list for the evolution of joint control strategies. 83

4.2 Final evolved PID gain parameters. 86

4.3 Action classification for the four-legged robot problem. 90

4.4 Variable counts for the unguided four-legged robot problem. 92

4.5 Variable counts for modified trigger network. 93

4.6 Expanded action classification for the four-legged robot problem. 100

5.1 Evolution parameters forxmax= 2.5. 115

5.2 Evolution parameters forxmax= 1.0. 116

5.3 PID control evolution parameters for inverted pendulumproblem. 118

5.4 Evolution parameters for the robotic arm problem. 124

6.1 Parameters utilized for the lower section of the roboticstructure. 132

6.2 Low and high stop values for lower section joints. 132

6.3 Parameters utilized for the middle section of the robotic structure. 133

xi

6.4 Low and high stop values for middle section joints. 134

6.5 Parameters utilized for the upper section of the roboticstructure. 134

6.6 Low and high stop values for Upper section joints. 135

6.7 Biped Action specifications for lower section. 137

6.8 Biped Action specifications for middle section. 138

6.9 Biped Action specifications for upper section. 138

6.10 Evolution parameters for biped evolution. 143

6.11 Final direct joint control parameters for behaviorb1. 144

6.12 Final direct joint control parameters for behaviorb2. 145

6.13 Final direct joint control parameters 147

xii

Chapter 1

INTRODUCTION

1.1 Autonomous Robotic Control

The creation of autonomous robots capable of complex navigation, control and planning

has always been an intriguing area of research. Today, various classes of applications

based on autonomous robotic control are being investigated, including those relating to

hazardous environments, transportation, service robotics, and so forth [82]. The benefits

associated with the successful implementation of such systems are enormous. However,

the design of robotic controllers for the efficient manipulation of autonomous robotic

agents in real-time can be a very computationally complex task. Such complexity in-

creases exponentially as the structure of the robot or its surrounding environment in-

crease in sophistication. The analysis of an agent’s interaction with the environment is

still largely unexplored due to the difficulty involved in designing systems that exploit

sensory-motor coordination [97]. Each action performed bythe a robotic agent forces

changes to its internal and external state vectors, which inturn affects its decisions re-

garding successive actions. Hence, the ability to predict the consequences of a particular

decision can be an extremely complex yet crucial component in the design of autonomous

robots.

In behavior-based robotics, the modulardivide and conquerapproach is usually uti-

lized to reduce the complexity of robotic controller designby partitioning the control

problem into manageable sub-parts. This method allows the designer to design each mod-

ule independently solving a single problem at a time. The control system is implemented

layer by layer with each layer taking the responsibility forcarrying out a particular basic

task [105]. However, several problems exist with this approach [53]:

• The decomposition method for the robotic control system as awhole might not be

apparent. Hence, the division lines chosen by the designer may or may not be the

most efficient.

• Interactivity among the different controller sub-parts provide an incomplete view

of the controller state as the interactivity with the environment must also be consid-

ered.

1

CHAPTER 1. INTRODUCTION 2

• As the number of controller sub-parts increases, the numberof potential interactions

grows exponentially possibly going beyond the designer’s capabilities to define the

correlations between the different system layers.

1.2 Evolutionary Robotics

Evolutionary robotics [60] is a powerful framework used forthe creation of self-organizing

robotic controllers capable of learning new behaviors based on their own interactions with

the environment. This approach relieves the designer from the need to partition the agent’s

behavior space or the need to map the interactions between the different system compo-

nents. The controller learning process is based on a geneticapproach where an agent

population is artificially evolved based on each individual’s ability to perform a given

task. Genetic algorithms (GA) are mostly used as the evolution mechanism utilizing a

fitness function as a measure of each agent’s performance. Inits general form, GA aims

to produce solutions to optimization problems relating to large search spaces of high di-

mensionality [53]. Learning takes place through the construction of new generations of

individuals utilizing genetic selection, crossover and random mutation. This evolutionary

cycle continues until the overall population fitness ceasesto increase.

1.2.1 Limitations of Evolutionary Techniques

Evolutionary techniques can be an essential part in the design of self-organized intelligent

behavior. However, some problems do exist that can greatly limit the potential of evolu-

tionary robotics. Although the evolutionary process strives to reach a level of convergence

in performance, once system equilibrium has been reached, the further evolvability of the

system may not be determined with any level of certainty. Harvey argues that after the

initial system convergence has been reached, only then can the true evolutionary work

begin [51]. Jakobi and Quinn acknowledge the same problem focusing on the importance

of the crossover and mutation parameters as tools for continued evolution [68]. However,

ascertaining the most appropriate values for the genetic parameters can still be a signifi-

cantly difficult task, specially when utilizing genomes that vary in size, which is usually

the case when the representative architecture itself is also evolving.

Another critical limitation of current evolutionary robotics methods stems from the

agent’s lack of awareness of its immediate environment and its active role in it. The agent

usually follows a trial-and-error approach based solely onactions taken and the conse-

quences of those actions determined primarily by the resulting values of the fitness func-

CHAPTER 1. INTRODUCTION 3

tion. As the search space increases in size, the likelihood of converging to sub-optimal

solutions also increases. The existence of an extremely large state space, also calledstate

explosion, remains a fundamental problem in model optimization [46].The inverted pen-

dulum problem, for example, as described by Sutten [127], has a search space of 2162.

Due to the size of the search space as well as the lack of a particular evolutionary strategy,

experimentation shows that using evolutionary techniquesalone can yield sub-optimal

results that fall short of solving the problem (Section 2.5). Hence, the development of

methods for reducing the search space size or guiding the evolutionary process using

loosely pre-defined strategies can increase the probability of accurate convergence.

1.3 Imitation-based Learning

Robotics research has recently gained more interest in imitation-based learning, also

called ”learning by watching” or ”learning by example” [110]. Researchers now feel

that the study of imitation-based learning could be the route to the creation of fully au-

tonomous robots [116] and could possibly revolutionize robot-environment interactions

by providing new and flexible methods for robot programming [21]. Meltzoff suggests

the partitioning of the imitative progression into four stages [92]:

• Body babbling: This is an essential element which facilitates the connection be-

tween muscle movements and different body configurations. Usually, a trial-and-

error approach is utilized where random muscle triggers take place while the result-

ing configurations are observed and recorded. Eventually, amapping, or schema, is

created linking body movements to potential resultant states.

• Imitation of body movements: The body schema is utilized to try and imitate an

observed movement through the usage of a probabilistic method of determining the

muscle groups that could contribute to a successful imitation.

• Imitation of actions on objects: A more advanced form of imitation where body

movements are utilized at a higher level to interact with environment objects.

• Imitation based on inferring intentions of actions: This stage involves an under-

standing of not only the surface actions, but also the embedded intention associated

with performing those action.

From a human perspective, research has proven imitation to be a very significant con-

tributor to social learning at many levels. “Mirror” neurons have been discovered whose

CHAPTER 1. INTRODUCTION 4

sole purpose is to fire when movement observance takes place or when similar movements

are executed by the observer [100]. From a robotic perspective, imitation can allow for

interaction biasing in relation to the agent and the environment; in addition, it can be a

crucial tool for constraining the search space for learning[21]. Imitation could also be

utilized as a tool for acquiring new behaviors as well as adapting existing behaviors using

new contexts [24].

1.3.1 Problems in Robot Imitation

Despite the potential advantages associated with imitation-based learning in robots, many

hurdles still face researchers and the research community has only begun to address such

issues[21]. We focus on four main imitation-related problems:

• The Correspondence Problem: In order for imitation to be successful, an explicit

correlation must exist between the learner and the demonstrator [91]. This can be

a difficult problem, specially when the body representations of the learner and the

demonstrator differ.

• The When Problem: At what instance in time should the learner be imitating? The

learner must be able to determine the appropriateness of imitation at a specific time

based on the current context as well as the learner’s internal goals and motivations

[21].

• The What problem: The learner should be able to selectively utilize parts of its

sensory input streams as the basis for its imitative process. This requires a level of

relevancy determination.

• The Inference problem: How can the robot infer the intentions, perceptions and

emotions of the demonstrator that initiate the visible actions observed? The ability

to perceive beyond the surface behavior to infer the underlying intentions of the

demonstrator is considered the most sophisticated form of imitative learning [110].

The problems mentioned constitute formidable hurdles in the path of imitation-based

learning. Current research, as in [21, 55, 116, 117], utilizes saliency as well as sys-

tem simplification to abridge the imitation problem. However, in order to fully achieve

imitation-based learning in robots, solutions must exist to these problems, or different

formulations must evolve that render such problems irrelevant.

CHAPTER 1. INTRODUCTION 5

1.4 Genetic Programming

A variation of direct imitation-based learning could rely on a programmatic approach

for dictating rules that govern the learning environment. Such rules could contribute

to the learning process by surpassing some of the critical problems associated with robot

imitation. This rule-based approach could still benefit from evolutionary methods in order

to evolve the most optimal set of governing rules. Genetic programming (GP) [74] could

be utilized as the evolution vehicle for this approach.

Genetic programming is an extension of genetic algorithms.Instead of evolving chro-

mosomes of individuals, as in GA, GP works on evolving a program that efficiently solve

a given problem. In GP, a program is represented using a tree structure where the internal

nodes of the tree represent the set of functions upon which the program is based, and the

external nodes represent variables and constants used as function parameters [75]. The

main benefit of GP lies in the fact that once the evolutionary phase is complete, a method

is produced instead of just a point solution[30]. As the system output is in the form of a

program, it can better adapt to situational variance by following the resultant algorithm

produced. In essence, GP strives to find an appropriate representation of the problem,

which is critical to the solution [134], through an evolutionary process.

Genetic programming offers a more flexible approach to evolution than genetic al-

gorithms. However, GP follows the same GA combined representation of the genome

(chromosome) and phenome (individual) as a single entity. Such representation as well

as the main structure of GP-based evolution results in several limitations:

• GP evolved structures tend to drift towards large and slow solutions on average

[114], so even if the solution is correct, it might not be the most efficient.

• If the genetic code is easy to manipulate, it loses its functional complexity [37].

• If functional complexity does exist, the nature of the genetic code manipulation

makes the results extremely difficult to reproduce with modification.

• GP suffers from the same GA problems relating to insufficientdiversity and the

possibility of reaching sub-optimal solutions [30].

Gene expression programming (GEP) was invented by Ferreira[37] to overcome some

of the limitations of GP. The main contribution of GEP is the separation of the genome

from its representation. The genome is structured as a linear symbolic string of fixed

CHAPTER 1. INTRODUCTION 6

length and is converted to its expression tree (ET) representation utilizing a specialized

language known as Karva. Although GEP solves the representational problem associated

with GP, it still suffers from the problem of insufficient diversity and the possibility for

sub-optimal convergence. In addition, both GP and GEP are generalized genetic methods.

The presence of specific genetic constructs for the development of intelligent robotic con-

trollers in particular is an essential yet missing element.For example, using the current

formulation, it is not feasible to define a specific sequence for function execution. From a

robot imitation perspective, the specification of execution sequences would be an essen-

tial component of the ”learning by example” approach, however, this element is missing

from both GP and GEP methodologies.

1.5 Situation and State Awareness

In addition to an agent’s ability to learn and execute primitive behaviors, an essential part

of a robot’s ability to strategize lies in its own awareness of its current state in relation

to the surrounding environment. Situation awareness (SA) relates to an agent’s ability

to analyze and understand the different parameters of both its internal and external envi-

ronments in order to make informed decisions. An intelligent agent may rely on sensory

inputs alone in order to decide on its next course of action; however, awareness of the

meaning of such sensory states adds to the agent’s ability toplan and strategize effec-

tively. SA essentially revolves around the understanding of information and the meaning

of such information in relation to the present and future of an agent’s life cycle [125]. Sit-

uation awareness is also a key element in the formulation of agenetic approach for agent

planning. In order to achieve its main goal, an agent must build a strategy for transporting

itself from one state to the next, until the final objective isreached. Endsley [36] defines

SA as consisting of two main partitions:

• Comprehension of the agent’s current state (both internal and external) in relation

to time and space.

• Projection of the agent’s near future status.

Several formulations currently exist for formally describing the state of an agent and

its environment. All existing formulations deal with the situation object from a general

sense by describing both the states of objects in the environment as well as actions that

could be executed within the environment. However, none of the existing methods expand

CHAPTER 1. INTRODUCTION 7

their constructs to include an agent’s ability to transition from its current known state to a

future desired state.

1.6 Thesis Overview

The aim of this research is to formulate a new framework for the successful evolution

of robotic controllers for the goal-based manipulation of autonomous robotic agents in

real-time. The framework introduces a new genetic approachlabeledGuided Genetic

Evolution, or GGE. The guided genetic evolution platform encapsulates a connectionist

model, labeledTrigger Networks, for the representation of articulated robotic structures

as well as the behavioral capabilities of robotic agents. The evolution of trigger networks

is based upon genetic programming methodologies with the inclusion of specialized al-

gorithms for the evolution of articulated robotic controllers. Evolutionary guidance con-

structs are also introduced as means for minimizing the search space associated with the

control problem and achieving successful evolution of agents in a shorter time duration.

A simulation environment based on rigid body dynamics is utilized for the functional

modeling of system interactions. The simulation environment allows for the utilization of

minimal agent representation in order to achieve reliable fitness allowing for the further

expansion of the research into the real domain.

1.7 Thesis Contribution

The proposed guided genetic evolution platform adds uniqueelements to current known

evolutionary techniques. Those elements have not been usedin any existing genetic evo-

lution framework, to the author’s knowledge. GGE is unique in several respects:

1. A new connectionist model, labeledTrigger Networks, is created for the encoding

of agent attributes and control capabilities. The model offers a high level descriptive

structure for the representation of control strategies of any level of sophistication

for the control of articulated robots. Trigger networks offer a time-based model for

the description of execution sequencing as well as control urgency associated with

each of the robotic joints.

2. A genetic evolution algorithm is formulated for the evolution of trigger networks

based on one or more fitness functions associated with the desired behaviors. The

algorithms presented as part of the evolution framework allows for the processing

of trigger networks through genetic selection, crossover,and mutation operators

CHAPTER 1. INTRODUCTION 8

over multiple generations in an effort to achieve successful fulfillment of the preset

behavioral goals.

3. Mechanisms for guiding the genetic process are formulated in order to reduce the

network convergence time and increase the quality of the convergence results.

4. The framework allows for the inclusion oflearning by exampletechniques in robotic

evolution while circumventing the current existing limitations that render such tech-

niques unachievable in a practical sense.

5. The framework is successfully utilized for the control ofbiped robot balancing and

walking behaviors in addition to other classes of robotic control. Although success-

ful biped mobility has been achieved utilizing different types of control strategies,

the genetic approach presented offers a high level of flexibility and expandability.

1.8 Summary

The successfully evolution of complex robotic controllersfor the manipulation of au-

tonomous robots could revolutionize the design and implementation of intelligent robotic

agents. Until today, the complexity of the behavioral interaction models of robots have

been prohibitive from a practical sense hindering any significant advancement in the de-

sign of autonomous articulated robots. The approach offered by guided genetic evolution

aims to circumvent many problems associated with current methodologies in order to

advance the fields of autonomous agent design and implementation.

Chapter 2

EVOLUTIONARY ROBOTICS

2.1 Introduction

Autonomous robotic motion control is a very intriguing problem that has prompted ex-

ploration in many areas of research. An autonomous robot is an independent entity ca-

pable of making intelligent decisions about its environment without any explicit human

intervention. Such a robot should be capable of successfully navigating its environment

while traversing its decision space and executing planned strategies that would allow it to

achieve its goals, both immediate and long term. The complexity associated with creating

such systems lies in the complexity of modelling the interactivity that takes place within

the robotic agent as well as between the agent and its environment.

Most current research exploring the area of autonomous robot design ignores the com-

plex problem of dynamic motion control relying heavily on the utilization of wheel-based

robots. Such robots mainly require an evolved decision-making mechanism capable of

controlling their basic locomotion tasks without any need for articulated control at any

level. The utilization of wheel-based locomotion also reduces the complexity of the inter-

activity model between the agent and its environment by reducing the number of variables

associated with the control problem.

The creation of robotic controllers capable of efficient decision making based on ar-

ticulated structures requires the existence of a mechanismfor managing and reducing the

complexity of the control system. Behavior-based roboticsrely on a divide and conquer

approach in order to partition the problem space into more manageable sub-parts. The

system is then structured as layers with each layer responsible for controlling a single ba-

sic task. However, the divide and conquer approach has some significant limitations[53].

Mainly, the system decomposition task is limited by the abilities of the designer. As the

number of partitions increase, so will the number of interactions that exist among the

system sub-parts possibly going beyond the capabilities ofthe designer.

Evolutionary robotics is a methodology for the design of self-organizing robotic con-

trollers that operate autonomously in real environments. Utilizing this approach, the de-

signer plays a less active role in the organization of systemdivisions as the basic system

behaviors emerge dynamically as a result of the interactions between the agent and the

9

CHAPTER 2. EVOLUTIONARY ROBOTICS 10

environment [105]. This method relies on the artificial evolution of an agent population

whose characteristics are encoded as artificial chromosomes. Each member of the pop-

ulation is tested to determine its success in performing a particular given task. Agent

performance is then evaluated based on a fitness function that measures the agent’s ability

to produce the desired results. Only individuals scoring the highest performance levels

are allowed to further participate in the evolutionary process. In the case of genetic al-

gorithms, a new population of chromosomes is produced through selective reproduction,

crossover and random mutation. This evolutionary process continues until the overall

performance of the population seizes to increase.

2.2 Evolving in Simulation

The evolution of robotic agents is usually performed in simulation due to the large number

of iterations required to produce successful results. Also, the unexpected behavior associ-

ated with the initial population of agents renders them potentially harmful to themselves

and to their surrounding environment. However, the effectiveness of evolution in simula-

tion is a largely debated topic. Brooks [22] was skeptical inregards to the problems that

might exist due to the use of simulators and the difficulty of accurately simulating real

world dynamics. Miglino [95] lists some of the factors that contribute to the difficulties

involved in developing control systems for real robots through the use of computer mod-

els. He argues that numerical simulations do not cover all the physical laws that govern

the interactions between the agent and the environment. Also, physical sensors usually

retain uncertain values and approximations while computermodels usually return perfect

sensory information. Finally, Miglino argues that different physical sensors frequently

perform differently due to slight differences in their physical makeup, while this fact is

usually ignored when building simulated environments.

2.2.1 Bridging the Gap

Although the problems resulting from the discrepancies present between a simulated en-

vironment and the real world must be acknowledged and considered, the careful study

of such problems could introduce solutions for bridging thegap between the two envi-

ronments making simulation-based training more effective. In [62] and [63], arguments

are made on how to reduce the problems associated with simulations in order to produce

more accurate results. The following are some of the methodsthrough which more precise

simulated training environments may be achieved.

CHAPTER 2. EVOLUTIONARY ROBOTICS 11

• The design of the simulation should be based largely on appropriate quantities of

real world data. The data should be regularly validated making the appropriate

adjustments to the environment.

• The introduction of noise should be considered at all levelsof the simulation allow-

ing for the simulated environment to better represent real world inconsistencies and

imprecision.

• The utilization of adaptive noise tolerant units as part of the design will allow the

final controller to adapt to the differences between the simulation and the real world.

In order for the evolutionary process to be reliably fit, sufficient conditions must be

set forth for the transfer of evolved controllers from simulation to reality. If evolving

controllers are forced to satisfy such transfer constraints, then despite the inaccuracy or

incompleteness present in the simulated environment, the evolved controller should still

transfer into reality [67].

2.2.2 System Modeling

The functional modeling of the relationships between the agent, its goals, and its envi-

ronment must be present in order to successfully model the constraints needed to achieve

reliable fitness. A comprehensive model of the agent’s internal state vector, external state

vector, as well as the agent’s goal priority vector is needed. As Figure 2.1 shows, the

core system components are tightly connected based on the given causality model. As

the agent changes its internal state, it forces changes to the external environment vector,

which might or might not cause further change in the state of the agent. Similarly, the

agent’s current goal priority vector will be re-prioritized as the state of the agent changes.

Different goal priorities affects the controller’s subsequent decision patterns.

Figure 2.1: Agent-environment causality diagram.

CHAPTER 2. EVOLUTIONARY ROBOTICS 12

In [65], a formulation is given for the accurate representation of the way in which the

internal state of an agent-environment system changes overtime. We consider~st to be

a state vector representing the agent’s various internal state variablessi at time t. The

value~st+1 is a function of~st , the sensory input at time t, represented as~it and the agent’s

goal priority vector given by~gt . Hence, given the functionS1 which defines the state

transformation of the agent’s internal state system over time,~st+1 is given by

~st+1 = S1(~it ,~st ,~gt) (2.1)

Similarly, the external state vector of the environment at time t +1, given by~et+1, is

a function of the state of the environment at timet and the state of the agent at timet +1.

The state of the agent’s external environment might or mightnot be modified by a new

agent state. The functionE1 defines the state transformation function for the environment

over time given the state of the agent.~et+1 is given by

~et+1 = E1(~et ,~st+1) (2.2)

The agent’s sensory input is clearly a function of the external environment. Whether

working in simulation or in the real world, the presence of noise (either real or simulated)

would cause the agent’s sensory input to be only an approximation of the external en-

vironment state and not an exact match. Consequently, the sensory input vector~it is a

function of the current state of the environment~et . We define the functionI1 to define the

translation between the external environment state and what is being sensed by the agent.

~it = I1(~et) (2.3)

Also, given the functionS2 which defines the way in which motor signals are gener-

ated by the controller, the vector~ot representing the generation of motor signals is given

by

~ot = S2(~st) (2.4)

In order to simulate a real world environment, noise is addedto the motor manipula-

tion signals within the environment. Consequently, the generation of motor signals might

or might not succeed due to various conditions. A guarantee constraint must be built into

the simulated environment to guarantee the realistic application of control signals. For

example, if an agent tries to transition to state~starget given state~sinitial and the current

state of the environment~i initial , the control signal vector~o1 will be produced. If the agent

CHAPTER 2. EVOLUTIONARY ROBOTICS 13

fails to achieve the desired state by applying the control signals decided upon, a new set

of signals must be generated to gracefully return the agent to the previous state~sinitial .

Alternatively, the controller might decide not to return toa previous state and instead ap-

ply control signal vector~o2 to transition to a new state other than~sinitial or~starget. The

possible transition scenarios are shown in Figure 2.2.

Figure 2.2: State transitions due to motor signal application where analternative state is
chosen given the failure to achieve a target state.

The agent’s goal vector~gt is dependant on the internal state of the agent~st as well

as the state of the environment~et . Given the functionG1 that defines the agent goal

transformations, the goal state vector is given by

~gt = G1(~st ,~et) (2.5)

The goal vector will need re-prioritization in relation to new agent states reached. For

example, the existence of a scenario where the agent is not balanced will prompt an im-

mediate goal to correct the imbalance situation before proceeding to fulfill other goals on

the agenda. The goal vector will need to follow continuous revisions and adjustments as

the system progresses. To deal with such needs, the simulator will have to offer a dynamic

model for the presentation of goals as well as an intelligentre-organization of goals with

every time step. The evolutionary process plays an important role in the creation of a

dynamic decision making mechanism capable of learning and adapting to rapid system

flux.

The progression of the agent-environment system can be described by the following

five equations:

CHAPTER 2. EVOLUTIONARY ROBOTICS 14

~st+1 = S1(~it ,~st ,~gt) ~et+1 = E1(~et ,~st+1)
~it = I1(~et) ~ot = S2(~st)
~gt = G1(~st ,~et)

(2.6)

The interdependency present between the different modulescalls for a systematic

approach for system transitioning considering all the relationships present. Intelligence

and learning must also be core elements of the decision making mechanism in order to

evolve populations that are reliably fit.

2.2.3 Minimal Simulation

The comprehensive modeling of interdependent system components can produce accurate

evolutionary results in simulation. However, in order to guarantee the reliable translation

of those results into real robots, Jakobi proposes the design of minimal simulations using

specific guidelines to ease the transfer of evolutionary results [65, 68]. The core design

principles proposed by Jakobi are as follows:

1. A limited base set of agent-environment interactions involved in the execution of a

particular behavior should be identified. The simulation should be designed around

the base set leaving other interactions to be rooted in the real world. This approach

would allow for the mixing of simulated and real environmentparameters yielding

a smoother transition into physical agents.

2. Different implementation aspects of the simulation mustbe randomly varied during

the evolutionary process allowing the evolving populationto develop a level of

adaptability to a changing environment. Enough variation must be included so that

the agents will evolve without dependence on specific implementation aspects.

3. The base set parameters must also be randomly varied from generation to genera-

tion and from trial to trial. This variance will increase thepresence of reliably fit

agents within the evolved population as agents will be able to cope with changing

environment parameters.

The minimal simulation approach increases the success rateof evolving real world

controllers. The alternative would be to process a significantly higher number of fit-

ness evaluations, which can be very time-consuming causingall the speed advantages of

simulation-based evolution to be lost.

CHAPTER 2. EVOLUTIONARY ROBOTICS 15

2.3 Genetic Algorithms

Evolutionary robotics [60] aim to develop an agent controller based on an adaptive artifi-

cial neural network [105]. Genetic algorithms (GA) are usually used as a teaching vehicle

through which the neural network can be trained. In its general form, GA methods can be

seen as a solution to optimization problems relating to a large search space of high dimen-

sionality [53]. Genetic algorithms are probabilistic search algorithms whereN potential

solutions of an optimization problem sample the search space [16]. A genetic algorithm

uses a selective reproduction approach operating on a population of abstract representa-

tions, or artificial chromosomes. In most cases, a chromosome (genome or genotype) is

structured as a string that represents a set of parameters relating to the evolutionary prob-

lem under consideration. A binary representation of the value of function variables to

be optimized, or the connection weights of an artificial neural network, are examples of

the type of encoding a chromosome could hold. Figure 2.3 shows an example of such an

encoding [97]. In a typical robotics application, a genotype would represent a parameter

of the agent controller in need of optimization. In order to evolve a controller neural net-

work, the floating point values defining the weights of the network nodes can be encoded

as integer values to be represented in the chromosome.

Figure 2.3: The parameters encoded within the chromosomes are represented as binary
0’s (white) or 1’s (black) and combined to form the value of the variablex to be fed into
the fitness function for evaluation.

CHAPTER 2. EVOLUTIONARY ROBOTICS 16

The evolutionary process typically starts with a population of randomly encoded

agents effectively sampling the entire search space associated with the control problem.

The evaluation of individuals takes place based on a well defined fitness function which

represents a performance measure upon which selection decisions are made. Individuals

scoring highest are allowed to reproduce sexually or asexually while others are eliminated

from the mix. The genetic algorithm evaluation and selection process is represented in

Figure 2.4 [53].

Figure 2.4: The genetic algorithm cycle of evaluation and selection.

2.3.1 Initialization

The initial population of individuals must be carefully initialized to best suit the nature of

the problem being investigated. An initialization that is most suitable to the problem at

hand would allow for faster population convergence. On the other hand, an inappropriate

initial selection could result in a lack of diversity causing premature convergence to a

solution that is possibly sub-optimal. Several methods could be utilized to generate the

initial population of individuals [41]:

• Random Initialization: A popular method where the population is chosen randomly

covering the entire search space with uniform distribution.

• Grid Initialization: The search space is divided into multiple intervals of a spe-

cific size depending on the nature of the problem. The population is seeded using

independent selection from the defined intervals.

• Non-clustering Initialization: This method guarantees aneven distribution by plac-

ing a restriction on the initialization process where each individual placed must be

CHAPTER 2. EVOLUTIONARY ROBOTICS 17

a predefined distance away from individuals who have alreadybeen placed.

2.3.2 Selective Reproduction

Lets consider a population of individuals whose chromosomes ci are encoded as fixed

length binary strings from the set

C = {0,1}n

where n is the length of the string encoding. Given a population of sizem, the entire

generationG at timet could be represented as [17]

Gt = (c1t ,c2t,,cmt)

Selective reproduction is based on selecting individuals with the best performance record

and making copies of their chromosomes. The next generationwill include a higher num-

ber of copies of chromosomes belonging to individuals whoseperformance was supe-

rior in previous generations. A selection operator is utilized to improve the performance

quality of a population by allowing individuals of higher quality a higher probability of

advancing to the next generation [16]. Theroulette wheelis a genetic selection operator

used to implement selective reproduction. The concept behind the roulette wheel selec-

tion method is that each individual in the population has a chance to become a member

in the next generation of individuals, and that chance is proportional to the performance

of this individual. Each slot in the wheel corresponds to an individual in the population,

and the size of each slot is representative of the individual’s fitness. More precisely, given

an individual denoted asc j whose fitness at timet is defined asf (c j,t), the size of the

wheel slotP[c j,t] corresponds to the fitness value of the individual normalized by the total

fitness ofm individuals in the population.

P[c j,t] =
f (c j,t)

m
∑

k=1
f (ck,t)

(2.7)

P[c j,t] represents the probability of an individual for being chosen for reproduction.

After spinning the wheel N times, the expected number of children fathered by individual

j is NP[c j,t]. There are two main drawbacks associated with using the roulette wheel

method. First, there are instances where the fitness resultsmust be sorted in order to

allow for the proper distribution of probabilities, which is a computationally expensive

task and might not be practical for large population sizes. Second, the fitness function

utilized must yield positive results. If that is not the case, a non-decreasing transformation

CHAPTER 2. EVOLUTIONARY ROBOTICS 18

ϕ : R → R
+ must be applied to shift the values to a usable range [17]. Theprobabilities

would then be defined as

P[c j,t] =
ϕ(f (c j,t))

m
∑

k=1
ϕ(f (ck,t))

(2.8)

Tournament selection is another selection method that is widely used. This method

is based upon the selection of the fittest individuals based on a tournament among a ran-

domly selected group of individuals. The evaluation of two competing individuals takes

place by choosing a random numberr between 0 and 1. Ifr is less than a predefined

valueT then the individual with the higher fitness is chosen to be a parent. Otherwise,

the other individual is chosen [97]. Depending on the type oftournament selection being

utilized, the selected individual may or may not be placed back into the population for

future re-selection.

Another selection method that exhibits extremely fast convergence behavior isdeter-

ministic selection. In this method, only individuals with the best fitness survive an evolu-

tionary round. Usually, the selection is done by selecting aspecific number of top-most

individuals after sorting the population according to the fitness values. However, this type

of selection may produce poor long term results as low performers are entirely removed

from the population, while they could exhibit certain attributes that could produce high

future performance.

2.3.3 Crossover Operator

As part of the evolutionary process, genetic operators are utilized to apply changes to

the genetic encoding of an individual. The crossover operator exchanges genetic mate-

rial between two parent individuals producing hybrid offspring. The application of the

crossover operation on individuals plays a central role in genetic evolution and could be

considered one of the main characteristics of the algorithm. The crossover points are cho-

sen randomly determining the section of genetic code to be transferred. Several crossover

methods may be utilized, each using a different formula for determining the nature of how

chromosomes are transferred between individuals.

• One-point crossover utilizes only a single random splitting point for the chromo-

somes of the individuals, then the two tails to the right or tothe left of the crossover

line are swapped.

CHAPTER 2. EVOLUTIONARY ROBOTICS 19

• In two-point crossover, two crossover points are randomly selected, and the genes

that reside between the two lines are swapped between the individuals.

Figure 2.5: Two-point genetic crossover operator. The genes residingbetween the two
crossover points are swapped between the two individuals.

• N-point crossover utilizesN breaking crossover lines where every second section

is swapped. A variation of this method is the Shuffle crossover where a random

permutation is applied to the parents before the N-point crossover is carried out.

Once the crossover has been performed, an inverse permutation is performed on the

children.

2.3.4 Mutation Operator

The mutation genetic operator is a process where changes aremade to an individual’s

genes relying on a predefined probability. The process is analogous to biological muta-

tion as it maintains genetic diversity from one generation to the next. For each of the

individual’s genes, the predefined probabilitypm is used to determine if the gene is to be

altered or left unchanged. The role of the mutation operatoris to allow for exploratory

moves within the search space preventing any specific point from becoming out of reach.

It also helps prevent the convergence of the evolutionary process to a suboptimal solu-

tion. However, the value ofpm must be small and chosen carefully so as not to result in

the chaotic changing of the genetic structure causing the process to become more like a

random search.

Given n genes, the genegi is mutated with the probabilitypm. Usually, a random

numberr is generated between 0 and 1, and the mutation takes place ifr < pm. Similar

to the crossover operator, several mutation methods may be utilized [17]:

• Single-bit inversion: A single randomly chosen bit is negated with probabilitypm.

CHAPTER 2. EVOLUTIONARY ROBOTICS 20

• Bitwise inversion: Each bit in the genetic string is inverted with probabilitypm

• Random selection:With probabilitypm the entire string is replaced by a randomly

generated string.

2.3.5 Core Components

Based on the principles discussed, we identify several components as core elements of

the genetic algorithm. These core components must be used inunison in order to produce

the evolutionary results desired. Different variations ofeach component exist; however,

the principles governing their usage are standard, and experimentation may be used to

determine the best variation for a specific problem at hand. The following are the core

components of the genetic algorithm:

• Generation of initial population: A random initialization process may be used,

however, in robotic control problems, special constraintsmay be placed on the ini-

tialization process so as not to produce individuals whose behavior may be harmful

to themselves or the environment.

• Evaluation of individual performance: A fitness function is used to evaluate the

performance of each member of the population. The results are stored and used to

determine the probabilities of individual selection.

• Individual selection for reproduction: Based on each member’s performance in

relation to the fitness function, one of the selection methods (roulette wheel, tour-

nament or deterministic) is used to choose the set of individuals to proceed to the

next generation. The higher an individual’s performance, the higher the probability

this individual will be selected.

• Generation of offspring through crossover:The next generation of offspring are

generated by choosing and applying one of the crossover methods to the parent

population. This would involve the swapping of genes between parents producing

the offspring.

• Mutation of selected offspring: Individual genes are mutated using a predefined

probability pm. The mutation method utilized is chosen depending on the problem

at hand.

CHAPTER 2. EVOLUTIONARY ROBOTICS 21

• Repeat until terminating condition is met: Any of the following conditions may

be chosen to terminate the evolutionary process:

– A target generation number is reached,

– A specific average fitness is reached, or

– A specific maximum fitness is reached.

The following algorithm describes the evolutionary process:

Procedure Genetic Algorithm begin(1)
t := 0;
initialize Gt ;
evaluate Gt ;
While Not termination-conditiondo
begin(2)

t = t +1;
select Gt from Gt−1;
crossover Gt
mutate Gt

evaluate Gt
end(2)

end(1)

2.4 Genetic Encoding

In order to successfully carry out the genetic process, means are needed for encoding

the different attributes of the agent being evolved. Two main encoding schemes are

mostly used: Binary-Coded Genetic Algorithms (BCGA) and Real-Code Genetic Algo-

rithms (RCGA). The following sections discuss the main characteristics of both encoding

schemes.

2.4.1 Binary Coding (BCGA)

Binary coding utilizes a string of binary bits of lengthn to represent each chromosome in

the population. The following case study demonstrates the usage of BCGA as well as the

application of the different genetic operators on a binary coded structure.

Our study will utilize a roulette wheel selection method along with two-point crossover

without mutation. We consider the simple problem of finding the maximum of a polyno-

mial function[17]. We define the polynomial functionf as

CHAPTER 2. EVOLUTIONARY ROBOTICS 22

f1 : {0,,63} → R

x 7→ 3x2 +2x+1

We choose a binary stringC = {0,1}6 where a value from{0,,63} is used to en-

code the chromosome of each individual within the population. Each individual will be

represented by a bit sequence to indicate a value corresponding to x. The fitness function

for each individual is then calculated by evaluating the function 3x2 + 2x+ 1. Given the

number of bitsn to be encoded, we choose an initial populationG of sizes to be initialized

such that

∀gi ∈ G,g(i,k) = Random[0,1], i ∈ {1, ...,s},k∈ {1, ...,n}

The initial population is chosen of size 10 yielding the random distribution shown in

Table 2.1. The last column shows the probability of choosingthe individual for reproduc-

tion based on the roulette wheel selection method.

Individual Chromosome x value f(x) pi

genotype phenotype f itness selection
1 1 1 1 0 0 1 57 9,862 0.17
2 0 1 1 1 0 0 28 2,409 0.04
3 1 1 0 1 1 0 54 8,857 0.16
4 1 0 1 1 0 1 45 6,166 0.11
5 0 0 1 1 0 0 12 457 0.01
6 1 1 1 1 1 0 62 11,657 0.21
7 1 1 0 1 0 1 53 8,534 0.15
8 1 0 1 0 0 1 41 5,126 0.09
9 0 0 0 0 0 1 1 6 0.00
10 1 0 0 0 0 1 33 3,334 0.06

Table 2.1: Initial random distribution of genetic code. The roulettewheel selection
method is used to produce the reproduction probabilitypi shown in the last column.

In order to evaluate the fitness of each individual, the encoded chromosomes must be

decoded to produce a performance value. In this particular scenario, where a bit-string

is used, each chromosome is decoded by evaluating the decimal equivalent of the binary

value stored. Given the encoded strings= {0,1}n, the chromosomeci is decoded as

ci =
n−1

∑
k=0

s[n−k] ·2k

CHAPTER 2. EVOLUTIONARY ROBOTICS 23

The computed results exhibit an average fitness of 5,640, while the maximum fitness

achieved is 11,657. The selection probability is computed based on the formula

pi =
fi

m
∑

k=1
fk

For example, individual number 6 scored the highest on the fitness evaluation with

a score of 11,657 yielding the highest selection probability of 21%. On the other hand,

individual number 9 scored the lowest yielding a probability very close to zero for repro-

duction. The fitness statistics of the initial population isshown in Table 2.2.

Total Average Max
Fitness Fitness Fitness
56,408 5,640 11,657

Table 2.2: Fitness statistics evaluating the performance of the initial random population.

The selection operator is then applied based on the reproduction probability of each

individual. The results of the application of genetic selection is shown in Table 2.3, while

the associated fitness statistics are shown in Table 2.4.

Individual Chromosome x value f(x)
genotype phenotype f itness

1 1 0 1 1 0 1 45 6,166
2 1 0 1 1 0 1 45 6,166
3 1 1 0 1 1 1 55 9,186
4 1 1 0 1 0 0 52 8,217
5 1 1 1 1 0 0 60 10,921
6 0 1 1 1 1 0 30 2,761
7 0 1 1 1 0 0 28 2,409
8 1 1 1 1 1 0 62 11,657
9 1 0 1 0 0 1 41 5,126
10 1 1 1 1 0 1 61 11,286

Table 2.3: Second generation of individuals after applying the selection operator.

The overall fitness of the second generation is clearly higher than that of the first. The

probabilistic selection of the best individuals of the firstgeneration produced an eleva-

tion in the average fitness achieved by the population. The two-point crossover genetic

operator is then applied to the second generation of individuals. The method relies on

CHAPTER 2. EVOLUTIONARY ROBOTICS 24

Total Average Max
Fitness Fitness Fitness
73,883 7,388 11,657

Table 2.4: Fitness statistics evaluating the performance of the second generation produced
by the selection operator.

the random selection of two crossover point for the transferof genetic material between

two individuals, as shown in Figure 2.5. In the bit-string representation, the bits residing

between the two crossover points are swapped. Table 2.5 demonstrates the application of

the two-point crossover method. The second column shows theindividuals pre-crossover,

while the fifth column shows the individuals after the crossover has been performed based

on the two random points chosen.

Individual pre- Point 1 Point 2 post-
crossover crossover

1 1 0 1 1 0 1 2 6 1 0 1 1 0 1
2 1 0 1 1 0 1 2 6 1 0 1 1 0 1
3 1 1 0 1 0 1 3 5 1 1 0 1 1 1
4 1 1 0 1 1 0 3 5 1 1 0 1 0 0
5 1 1 1 1 1 0 2 6 1 1 1 1 0 0
6 0 1 1 1 0 0 2 6 0 1 1 1 1 0
7 0 1 1 1 0 0 4 4 0 1 1 1 0 0
8 1 1 1 1 1 0 4 4 1 1 1 1 1 0
9 1 1 1 0 0 1 1 3 1 0 1 0 0 1
10 1 0 1 1 0 1 1 3 1 1 1 1 0 1

Table 2.5: Application of the two-point crossover operator to the second generation of
individuals.

After 20 generations of selection and crossover, we can see the average fitness of

each generation increase gradually over the previous as shown in Figure 2.6. For this

simple problem, the optimal average fitness is reached by the11th generation, which

demonstrates a relatively rapid convergence. However, other more complex problems

may require hundreds or thousands of generations for the results to converge.

2.4.2 Discretized Search

When dealing with discrete values forx, the chromosome binary encoding is direct. How-

ever, when dealing with a range of continuous values, discretization of the search space is

CHAPTER 2. EVOLUTIONARY ROBOTICS 25

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

. F
itn

es
s

Generation Number

Figure 2.6: Evolution over 20 generations of individuals.

needed. One technique for achieving discrete values for theencoding of agent attributes is

to divide the search space into 2n intervals and represent each interval by a point that can

be enumerated. This strategy would yield 2n points to be encoded using a binary string.

In the general form, given the interval[a,b], the encoding function is described as [17]

cn,[a,b] : [a,b] → {0,1}n

x 7→ bn(rnd((2n−1) · x−a
b−a))

wherebn is a function which converts a number from{0, ...,2n−1} to its binary repre-

sentation. The decoding function can be defined as

c̃n,[a,b] : {0,1}n → [a,b]

s 7→ a+bin−1
n (s) · b−a

2n−1

Lets consider the problem of finding the maximum of the function:

f2 : [0,15] → R

x 7→ √
x·cos(x)

The plot for the function is shown in Figure 2.7. We will choose n = 16 for the

discretization of the search space yielding a solution accuracy of 1.14E−4. We will now

apply the evolutionary algorithm to a population of 100 individuals using the roulette

wheel selection method, two-point crossover and random mutation with a probability of

0.001.

CHAPTER 2. EVOLUTIONARY ROBOTICS 26

-10

-5

 0

 5

 10

 0 2 4 6 8 10 12 14

Figure 2.7: Plot of function x =
√

x ·cos(x)

The results of the evolutionary process are shown in Figure 2.8. An optimal approxi-

mate solution was reached by the tenth generation, For this experiment, the results show

how quickly an evolutionary algorithm can reach an approximate solution for a particular

problem compared to an exhaustive search which scans the entire search space. An ex-

haustive search would require 216 = 65,536 evaluations, while the optimal solution was

reached using 10×100= 1000 evaluations.

2.4.3 Schema Theorem

The schema theorem was formulated by Holland [60] in 1975, and it provides theoretical

expectations of a GA over the evolutionary process. The theorem represents the first

attempt to explain why GAs work, as it describes the propagation of schemata from one

generation to the next under the influence of selection, crossover and mutation. Some

criticism does exist over the schema theorem; however, Holland’s work does effectively

describe the way searches take place using GAs.

A schema describes a pattern present among a subset of chromosomes. For example,

the schemaε = 1∗1∗00 represents the chromosomes:

{(101000), (101100), (111000), (111100)}

Two features ofε are described as follows [57]:

CHAPTER 2. EVOLUTIONARY ROBOTICS 27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

. F
itn

es
s

Generation Number

Figure 2.8: Discretized search evolution results. Optimal solution is reached within the
first 20 generations of evolution.

• The order ofε, denoted byo(ε), represents the number of fixed symbols present in

ε.

• The defining length ofε, denoted byδ(ε), represents the difference between the

first and the last fixed symbol inε.

The informal statement of the Schema Theorem is thatshort, low-order schema with

high average fitness will increase in number in the followinggeneration. We now consider

a binary-coded chromosome of lengthL. The functionf (ε) represents the average fitness

of the instances ofε in the population, whilēf denotes the average fitness of all individuals

in the population. The number of instances ofε in the population at generation t is defined

asm(ε, t). After the application of the selection, crossover and mutation operators, the

expected number of instances ofε in generationt +1 is given by [60]

m(ε, t +1) ≥ m(ε, t) · f (ε)
f̄

· (1− pc ·
δ(ε)
L−1

) · (1− pm)o(ε) (2.9)

After applying the selection operator, the expected numberof ε present ism(ε, t) · f (ε)
f̄

.

The probability ofε being present after applying the crossover operator is approximated

by(1−pc · δ(ε)
L−1). We notice that the probability is inversely related toδ(ε). The probability

CHAPTER 2. EVOLUTIONARY ROBOTICS 28

of ε being present after mutation is approximated by(1− pm)o(ε) and it is inversely related

to o(ε).
The condition for a schema to increase its fitness in the next generation is given by

f (ε)
f̄

> (1− pc ·
δ(ε)
L−1

) · (1− pm)o(ε)

TheBuilding Block Hypothesis[47] is closely related to the Schema Theorem. It de-

scribes the behavior of GAs in an effort to discover and exploit collections of closely in-

teracting genes. The collections are further combined to create successively larger blocks

that eventually solve the problem [34].

The main criticism of the Schema Theorem is in the fact that the theorem does not

take into consideration the effects of crossover and mutation on the evolving populations.

Such effects change the structure of the chromosome as well as the successive effects of

the genetic operators. A more sophisticated presentation of the theorem will have to take

into account the affects of mutation as it allows for the creation of a child whose schema

belongs to none of the parents, also called schema creation.Schema disruption is also an

important phenomenon which must be considered. Disruptionoccurs when the schema

of the child differs from that of its parents.

2.4.4 Arguments for BCGA

Two main arguments exist for using binary-coded genetic algorithms. The first argument

is that the use of the binary alphabet maximizes the implicitparallelism in the evolutionary

process. A binary-coded genetic algorithm processes a verylarge amount of information

in parallel, and that is partly due to the nature of the binaryalphabet where each part of

the chromosome is a separate entity.

For a given information content, strings coded with smalleralphabets are representa-

tives of larger numbers of similarity subsets (schemata) than strings coded with larger

alphabets[57].

The second argument relates to the number of fitness evaluations feasible in relation to

the problem being solved. This problem may be managed through the choice of smaller

population sizes as well as smaller number of genes within each chromosome. This would

reduce the computational expense of the evolutionary process.

CHAPTER 2. EVOLUTIONARY ROBOTICS 29

The binary alphabet offers the maximum number of schemata per bit of information[48].

Despite the advantages of using BCGA, some drawbacks do exist due to the fact that

a large portion of optimization problems utilize real-valued parameters. The first disad-

vantage is that the interval for value discretization must be specified in advance. Classical

BCGA methods do not allow for an unbounded search of the solution space, and a very

large interval would require a massive number of partitionsto cover it, or the precision of

the results will have to be sacrificed. In addition, the accuracy of the solution produced is

limited by the width of the discretization interval width given by

1
2n−1

Due to some of the limitations of BCGA, other coding schemes have been developed

to deal with specific types of problem parameters. The next section discussesReal-coded

Genetic Algorithms (RCGA), which was developed specifically to deal with real-valued

parameters in a more practical manner.

2.4.5 Real Coding (RCGA)

Coding the chromosomes of individuals as real numbers allows for the direct representa-

tion of problem parameters in the genetic code. An N-dimensional vector of floating point

numbers may then be used to represent each individual in the population. The size of the

chromosome vector will be the same as the size of the vector which represents a solution

to the problem, so each gene in the chromosome represents a variable of the problem [57].

The use of real-coded genetic algorithms (RCGA) offers manyadvantages over the use

of BCGA.

• Real coding allows for encoding the different chromosomes (genotype) without the

need for any translation of the problem parameters. The genotype and phenotype

become the same. This allows for a much simpler genetic representation of the

problem.

• Encoding parameters as floating point numbers allows for theexploration of very

large domains without loss of precision.

• RCGA allows for the utilization ofgraduality in order to achieve the desired solu-

tion. With BCGA, changing a single gene can cause a drastic change in the fitness

value of the individual. However, RCGA allows for the gradual changing of chro-

mosome values in an effort to achieve gradual enhancement inthe fitness value.

CHAPTER 2. EVOLUTIONARY ROBOTICS 30

The selection operator discussed for BCGA can be used with RCGA without the need

to make any modifications. The selection process is identical as it is based on the fit-

ness values of the individuals regardless of the method of encoding being utilized. The

crossover and mutation operators, however, will need to undergo some modifications as

shown in the following sections.

2.4.6 Crossover Operator for RCGA

The crossover operator for RCGA carries the same principlesas that of BCGA. The main

purpose of the operator is to swap genetic material between two individuals creating off-

spring that share the characteristics of the parents. The following are the most common

crossover operator types used for RCGA:

• Simple crossover: this crossover type is identical to the one-point crossoverfor

BCGA. Instead of swapping bits between the two individuals,floating point ele-

ments are swapped. Given the two individualsC1 =(c1
1,c

1
2, ...,c

1
n) andC2 =(c2

1,c
2
2, ...,c

2
n),

the crossover locationk ∈ {1,2, ...,n−1} is chosen at random, then the two off-

springb1 andb2 are structured as follows:

b1 = (c1,1,c2,1, ...,ck,1,ck+1,2, ...,cn,2)
b2 = (c1,2,c2,2, ...,ck,2,ck+1,1, ...,cn,1)

• Flat crossover:Given the individualCi =(ci
1,c

i
2, ...,c

i
n), the offspringbi =(x1,x2, ...,xn)

is created using the vector of random values(r1, r2, ..., rn) where

xi = ri ·c1
i +(1− ri) ·c2

i

• BLX- α crossover: This method is an expansion of the flat cross over method. In

order to allow values outside of the interval[min(x1
i ,x

2
i),max(x1

i ,x
2
i)] to be included

in the offspring generation, this method expands the range by the percentageα.

Each element of the offspring chromosome vector is chosen asa random value

from the interval [17]

[min(x1
i ,x

2
i)− I ·α,max(x1

i ,x
2
i)+ I ·α]

where

I = max(x1
i ,x

2
i)−min(x1

i ,x
2
i)

and the parameterα has to be chosen in advance to control the amount of expansion

taking place.

CHAPTER 2. EVOLUTIONARY ROBOTICS 31

2.4.7 Mutation Operator for RCGA

The mutation operators for RCGA operate on individual chromosomes changing their

genetic structure. Given the chromosomeC = (c1, ...,ci, ...,cn), any of the following mu-

tation method may be applied to changeC [94].

• Random mutation: each geneci is replaced by a random value generated from the

predefined interval[ai,bi].

• Non-uniform mutation: this method allows for the impact of the mutation to be

less significant as the number of generations increase. Letgmax be the maximum

number of generations to be evolved, and letg be the current generation number.

The geneci is then calculated using one of the following two values (selected at

random with equal probability)

c′i = xi +∆(t,bi −xi)
c′′i = xi −∆(t,xi −ai)

where

∆t(t,x) = x·
(

1− r

(

1− g
gmax

)b
)

The valueb is chosen by the user to determine the significance of the iteration

number on the mutation result.

2.4.8 BCGA-RCGA Comparison

Figure 2.9 shows two comparative graphs for the maximization problem initially intro-

duced in section 2.4.2. The upper graph shows the evolution results demonstrated earlier

using the BCGA techniques discussed. The lower graph, however, shows the results for

the RCGA implementation using chromosomes based on real-coded parameters. A pop-

ulation of 100 individuals was chosen, and the chromosome ofeach individual was coded

using thex value to be optimized, thus the problem parameter was in factthe genotype

to be evolved. The BLX-α crossover method was used to allow for expanding the search

target area in an exploratory manner. An expansive crossover α value of 0.1 was chosen

as an intermediate value to limit the deviation from any goodresults reached. A mutation

probability pm = 0.005 was used to promote stability while keeping the mutationfactor

still present. As shown in the figure, the results are almost identical. Such results demon-

strate the effectiveness of RCGA encoding methods eliminating the need for discretizing

the parameter search space.

CHAPTER 2. EVOLUTIONARY ROBOTICS 32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

. F
itn

es
s

Generation Number

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

. F
itn

es
s

Generation Number

Figure 2.9: Two graphs showing the comparative performance of BCGA andRCGA. The
top graph represents the BCGA solution covered in section 2.4.2, while the bottom graph
shows the RCGA solution to the same problem.

2.5 Evolving a Robotic Controller

In this section, we discuss the utilization of evolutionarytechniques in the creation of

a robotic controller capable of making real-time control decisions. The controller we

will demonstrate handles the inverted pendulum problem, which is often utilized as an

example of an unstable dynamic system with multiple parameters. The evolutionary pro-

CHAPTER 2. EVOLUTIONARY ROBOTICS 33

cess will allow for the controller to optimize its own performance through the knowledge

gained while performing the task. This is accomplished through the evaluation of the

outcome of individuals after each experiment, followed by evolving the producers of the

best results.

The inverted pendulum problems deals with the task of keeping a rigid pole, which

is hinged to a moveable wheeled cart, from falling to the ground. The pole is free to

move about the hinge axis within the vertical plane and wouldfall under the force of

gravity unless the cart is moved in an appropriate fashion tocounter any falling potential.

The cart is also constrained to a maximum distance from its initial starting point. In

order to successfully handle the balancing task, the controller must be capable of applying

corrective left and right forces to the cart to compensate for the pole’s rotation, yet without

having the cart exceed the maximum distance allowed. Figure2.10 demonstrates the

overall characteristics of the inverted pendulum environment [1].

Figure 2.10: The inverted pendulum environment.

The following four parameters are available to the controller at each time stept:

• xt : the horizontal distance of the cart along the x-axis measured from the cart’s ini-

tial starting position. The value is given in meters and is constrained to a maximum

value ofxmax,

• vt : the horizontal velocity of the cart along the x-axis. The value is given in meters

per second,

• θt : the pole’s clockwise angle measure to the z-axis. The angleis given in degrees,

and the maximum angle bounds allowed to maintain successfulbalancing is±θmax,

• ωt : the pole’s angular velocity measured in degrees per second.

CHAPTER 2. EVOLUTIONARY ROBOTICS 34

For this particular system, a failure state is reached if thepole falls past the given

angle (|θ|> θmax), or if the cart reaches the maximum distance allowed. In formal terms,

at timet, the system statest is described as

st =

{

1, i f |θt | < θmaxor |xt | < xmax;
0,otherwise

In order to evolve individuals capable of balancing the polesuccessfully, a fitness

function formulation is needed to the gauge the performanceof each individual. The

fitness function accumulates a value+1 for each time step during which failure did not

occur. For example, if the pole was successfully balanced for 100 time steps, then the

resultant value of the fitness function is 100. Once failure occurs, the pole is reset to the

vertical position and the cycle repeats for the next individual.

2.5.1 Physics-based Simulated Environment

A physics-based simulation environment based on Rigid BodyDynamics was utilized for

evolving individuals to perform the inverted pendulum tasksuccessfully. The environ-

ment accurately simulates gravitational forces as well as the friction forces between the

tires and the ground. Figure 2.11 shows the simulated environment being utilized.

Figure 2.11: Physics-based simulation environment utilized for the application of the
evolutionary algorithms.

A fixed time step oft = 1/30 is used as the basis for the dynamics engine stepping.

CHAPTER 2. EVOLUTIONARY ROBOTICS 35

Although the physics-based simulation environment requires more processing time per

time step than using direct mathematical methods for calculating the different parameters

of the environment, the added elements of collision detection and response adds to the

reality of the simulation as many parameters interact together to produce a single result.

Such interactions increase the level of noise in the simulation environment causing the

results to be more reliably fit. The training takes place without rendering the scene after

each time step in order to speed up the evolutionary process.After each failure, or if the

maximum time step is reached, the pole is reset back to the vertical position, and the next

individual takes control of it. Once the population has evolved, then the best individual is

chosen for a rendered run to visually show the results of the evolution.

2.5.2 Fixed-magnitude Force Application

The original inverted pendulum experiment utilizes corrective forces of a predefined fixed

magnitude in order to compensate for the motion of the pole; aforce of zero magnitude

is not permitted at any time step. The inverted pendulum problem definition follows

the principles presented by Barto, Sutton, and Anderson [13] in that the search space is

divided up into partitions (boxes) which produce specific target ranges for each of the

problem parameters.

Each of the four input parameters is partitioned into multiple sectors of interest. This

approach yields a discrete number of states for which the controller could adapt its signals.

The symmetry between the positive and negative parameters was not taken into account

in order to maintain the realism of the control environment.The four parameters are par-

titioned according to the ranges shown in Figure 2.12. This method yields 162 distinct

states to which the controller must adapt its decision making. As this experiment will

utilize forces of a fixed magnitude, and zero force application is not allowed, the resultant

control signal will either be a command for left-force application or right-force applica-

tion. Hence, a binary value would be sufficient to describe the control signal needed to

compensate for the motion of the pole. For each of the 162 states, a single binary value

can yield the application of the appropriate force.

An RCGA encoding scheme is used to structure the chromosomesof the individuals

to be evolved. Each chromosome will contain 162 genes (floating point numbers) each

representing a particular state of the problem. The RCGA encoding was chosen instead of

BCGA to allow for a gradual learning curve that has a better chance of approaching better

results. The individuals will be evolved so that the commandgi associated with each state

(gi < 0.5 for left andgi >= 0.5 for right) would be optimized from one generation to the

CHAPTER 2. EVOLUTIONARY ROBOTICS 36

Figure 2.12: Search space partitioning for the inverted pendulum problem. The partition-
ing yields 162 distinct states.

next. The following parameters were used in the evolutionary process:

• Number of individuals: 50

• Number of generations: 100

• Crossover expansion range: 0.1

• Mutation probabilitypm: 0.01

2.5.3 Results

The evolution results (Figure 2.13) show a steady increase in performance that took place

over the first 40 generations. The last 60 generations produced fitness results that were

confined between 2,300 and 2,800 showing a slowing down in thelearning process. Such

a halt in learning is attributed to the complexity of the problem as well as the delayed

reward or penalty associated with each decision. A wrong control decision would cause

a failure to occur several hundred steps later or more makingit difficult to trace back

the source of failure. Other methods, like reinforcement learning for example, which is

beyond the scope of this discussion, allow for such backwardpropagation of reward or

CHAPTER 2. EVOLUTIONARY ROBOTICS 37

penalty to further enhance the learning curve. However, from an optimization point of

view, the evolutionary process is still the most effective tool for searching the problem

space and yielding significant results using a small number of iterations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

Figure 2.13: Evolution results for the inverted pendulum problem utilizing physics-based
rigid body dynamics engine. The graph shows the average fitness over 100 generations of
evolution; each generation included 50 individuals.

The experiment was repeated using the code written by Sutton[127] which utilizes

Euler’s method for applying the equations of motion. The only difference between the

environment used in the first experiment and the second is in the utilization of rigid body

dynamics. The first experiment took into account the frictional and interactive forces

between the environment bodies producing an approximationthat includes a level of noise

which better resembles real world results. However, the second experiment used only

numerical approximations applying the equations of motionbased on the action decided

upon by the controller.

As seen from the results shown in Figure 2.14, the overall fitness reached significantly

higher values than in the previous experiment. Over the first90 generations, the results

were similar to the results based on rigid body dynamics, however, a drastic improve-

ment took place over the last 10 generations. Such significant differences in results show

the importance in building simulations that better resembles real world environments. A

simulation based solely on numerical methods without regard to the complex interac-

CHAPTER 2. EVOLUTIONARY ROBOTICS 38

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 20 40 60 80 100 120

Figure 2.14: Evolution results for the inverted pendulum problem utilizing only numerical
approximations of the equations of motion.

tions between bodies might show great results only in simulation, but those results do not

translate well into real robots operating in a more complex environment which includes

higher levels of noise. Section 2.2 offers a more detailed discussion of simulation-based

evolution.

2.6 Conclusion

Evolutionary robotics utilizing genetic algorithms offerextremely powerful methods for

rapid solution approximation, even when the scope of the problem covers a very large

search space. Evolutionary robotics has the following advantages:

• A thorough understanding of the dynamics of the problem is not needed as the

evolutionary process allows for the discovery of the best solution to the problem

using a self-organization mechanism.

• The fine tuning of evolutionary parameters is possible allowing for a more refined

search when needed.

• The evolutionary process is very fast in finding a solution, scanning very large

search domains over only a few generations.

CHAPTER 2. EVOLUTIONARY ROBOTICS 39

• The genetic algorithms are generally easy to design and implement. Usually the

genetic chromosomes map directly to the problem parameters.

The following disadvantages are also associated with evolutionary techniques:

• Problems requiring a very large number of parameters might converge to subopti-

mal solutions.

• Choosing unsuitable parameters for the genetic algorithmscan possibly yield inac-

curate evolutionary results or longer convergence time.

Despite the disadvantages mentioned, evolutionary robotics provide many possibili-

ties for the creation of complex controllers that evolve based on their own relative perfor-

mance. Although beyond the scope of this discussion, the evolutionary process may also

be combined with other neuro-based methods to provide the flexibility of neural networks

as well as the fast optimization possibilities of genetic algorithms.

Chapter 3

GENETIC PROGRAMMING

3.1 Introduction

The automation of algorithm design for solving complex problems is a very intriguing

field of study. Such automation could decrease the time required for achieving a solution

as well as allow for the automated optimization of existing solutions [30]. However, the

formulation of an automated platform for the efficient construction of algorithmic solu-

tions to problems can be a very complex task. Genetic Programming (GP) [70, 71, 72] is

a methodology based on genetic evolution and used to evolve algorithmic solutions in the

form of computer programs. GP represents a natural evolution from Genetic Algorithms

(GA) [60] as it aims to reduce human intervention [131] in solution finding. Instead of

evolving chromosomes that represent a point solutions to a problem as in GA, GP evolves

a more flexible structure representing a program. In essence, GP produces a method for

solving a problem rather than just a point solution [30], andthat is one of the main benefits

of genetic programming. GP has been successfully utilized for developing solutions in

many areas, including data mining and classification [42], symbolic regression [121], sys-

tem modeling [80] and robotic control [131]. GP has also produced a significant amount

of human-competitive results, as documented by Koza [74].

3.2 Components

GP uses many of the same methodologies utilized in GA evolution. The main distinction

lies in the nature of the entities being evolved. GP evolves program components structured

in a tree-based fashion through the application of genetic operators very similar to the

ones used in GA. In GA, the individuals are usually composed of different parameters

that represent a solution to a particular problem. GP individuals are composed of different

primitive components that form a program or algorithm for solving a particular problem.

Those primitive components are usually connected via a tree-structure that represents the

program to be evaluated using the associated fitness function. GP operators then perform

on the trees within the population by changing their structure in order to achieve better

overall fitness. The following main components are utilizedin the GP framework:

40

CHAPTER 3. GENETIC PROGRAMMING 41

• Functionsrepresent core components of the genetic programming approach. The

essence of the process is to combine functions with different problem-specific pa-

rameters in order to create a solution to a problem. Functions may represent prim-

itive tasks, like addition, subtraction and multiplication for example, or they may

represent problem-specific complex tasks that could be treated as single entities. If

a task may not be represented as a single entity, it may be partitioned into smaller

tasks for inclusion in the evolutionary process.

• Terminalsare combined with functions in order to represent the alphabet of the pro-

grams being evolved. Terminals are usually composed of variables and constants

to be treated as parameters to the various functions defined.By combining termi-

nals and functions using a tree-based structure, a program is created that could be

evaluated in relation to its ability to solve the problem being investigated.

• Thefitness functionis a very important component that simply carries the essence

of genetic programming. Once a program has been created through combining the

different system primitives, the performance of the program has to be evaluated,

and this is achieved through the use of the fitness function. The appropriateness of

the fitness function is key to the successful and optimal convergence of the genetic

process. Hence, the function has to be chosen carefully to act as an appropriate

measure of performance. The output of the fitness function may represent a numeric

value resulting from the execution of the genetic program, it may represent an error

value that measures the difference between the program output and a pre-defined

desired output, or it may take any other form to be determinedby the designer.

The human designer must supply five main components to the GP framework in order

to commence the evolutionary process. The five components needed are described as:

1. The set of terminals representing problem-specific variables, zero-argument func-

tions, and constants.

2. The set of primitive functions to be utilized in the program solution.

3. The fitness function to be used to measure the performance of each individual.

4. Evolution-specific parameters used to control the evolutionary process.

5. The termination condition used to determine when the evolution terminates in order

to present the results.

CHAPTER 3. GENETIC PROGRAMMING 42

3.3 Structure

Genetic programming utilizes tree representations to define possible solutions to a prob-

lem. Programs are encoded assyntax treesthat represent a possible solution to a prob-

lem. The function parameters define expressions involving variables, constants as well

as primitive operations. The specific functionF(x+y∗x,x∗y) would be represented by

the syntax tree shown in Figure 3.1. The leaf nodes of the syntax tree represent terminals

containing variables and constants. The interpretation1 of the tree starts at the leaf nodes

and moves up the tree in a recursive fashion. This means that in order to evaluate any

node, its children must be evaluated first producing resultsto be propagated up the tree

until a final result is achieved.

Figure 3.1: The genetic programming representation of the functionF .

Similar to higher level programming, a genetic program may also be composed of

multiple partitions (modules or subroutines) utilized in reaching the final solution. This

is accomplished by grouping multiple sub-trees (branches)together under a singleroot

node. Such representation allows for each branch of the treeto be dedicated to solving a

specific task, then the different solutions are grouped together to produce a single result.

This allows for the utilization of modularity in building the final algorithmic solution. In

addition, it allows for the generation of more complex programs utilizing simpler func-

tions residing at a lower level of the solution tree. A representation of a multiple sub-tree

program is shown in Figure 3.2[73].

1Tree interpretation means traversing the tree using a specific strategy in order to achieve a result. This
would be equivalent to executing the program represented bythe tree.

CHAPTER 3. GENETIC PROGRAMMING 43

Figure 3.2: Multiple sub-tree program representation.

3.4 Genetic Operators

GP uses genetic operators very similar to those utilized in GA as means for evolving gen-

erations of individuals towards higher fitness. Once the fitness of an entire generation is

evaluated2, several genetic operators may be applied in order to produce the next gener-

ation to be evolved. The process continues until a maximum number of generations has

been reached or a particular fitness value has been recorded.The termination condition

may be based on the maximum fitness value achieved by a single individual, or it may be

based on the average fitness value for an entire generation. Usually, once the evolutionary

process has commenced, no human interaction takes place. The process operates on an

automated basis until the termination condition has been met. The only exception would

be if the user determines that a need exists for terminating the genetic process manually

at a given point in time. The following sections identify thecore operators utilized in GP.

3.4.1 Selection Operator

Reproductive selection is usually based on the performanceof each individual by as-

signing a selection probability that is proportional to that individual’s fitness score. The

selection methods used for GP are very similar to their GA counterparts. The following

are some of the most popular selection methods being utilized:

• The roulette wheelmethod performs selection based on the probability for repro-

duction of an individual. The selection probability of individualc j is given by the

2The fitness of a generation is evaluated by allowing each individual an attempt at solving the problem
then evaluating the performance using the problem-specificfitness function.

CHAPTER 3. GENETIC PROGRAMMING 44

formula

P[c j,t] =
f (c j,t)

m
∑

k=1
f (ck,t)

where the individual’s fitness at timet is defined asf (c j,t). The size of the wheel

slotP[c j,t] is normalized by the total fitness ofm individuals in the population. The

reader may refer to section 2.3.2 for a detailed discussion of selective reproduction

as it relates to genetic algorithms.

• Tournament selectionis based on selecting two individuals at random from the pop-

ulation and the individual with the higher fitness value proceeds to the next genera-

tion. The individuals may or may not be returned back to the general population for

the next random selection depending on the method being utilized. The tournament

proceeds until a sufficient number of individuals have been selected for the next

generation.

• Rank selectionutilizes the rank of individuals instead of their fitness value as the

selection criteria. For example, the top ten performers maybe chosen regardless of

their specific fitness output.

3.4.2 Crossover Operator

Although the essence of the crossover operator is similar tothat of GA, due to the signifi-

cant representational difference between the two frameworks, the application of crossover

in GP is different. Since GP individuals are represented as syntax trees, the crossover op-

erates on the tree structures exchanging parts of the tree representations of individuals.

The exchange takes place by selecting a random link in each tree then exchanging the

associated sub-trees between the two tree representations. Figure 3.3 demonstrates the

crossover operation being performed on two individuals.

One of the main advantages of genetic programming over genetic algorithms is that

identical parents may produce children that are different from the parents. The tree struc-

tures allow for such crossover to take place as the operationwill alter the original trees

creating children that are different from the original. An example of this type of crossover

is shown in Figure 3.4.

CHAPTER 3. GENETIC PROGRAMMING 45

Figure 3.3: The crossover operation performed on two parent trees thatare different.

3.4.3 Mutation Operator

Mutation operates on a single individual by altering the structure of its representative tree.

This is usually done by selecting a random mutation link thenreplacing the sub-tree below

the link with a randomly generated sub-tree. Genetic mutation allows for exploratory

moves into the search space possibly discovering new and more efficient methods for

solving the problem. Mutation may also be implemented as a regular crossover between

the selected individual and a randomly generated tree. Figure 3.5 shows the random

mutation operator being applied to a single individual.

3.5 Implementation

Many programming languages have been utilized to create GP frameworks. Lisp has

evolved as one of the prominent languages for GP, since its recursive structure facilitates

the use of tree-based organizations. Linear representations has also been utilized to build

successful GP Platforms [4]. In general, GP principles are not tied to any single formal

language. The GP methodologies may be used to evolve software or hardware solutions

CHAPTER 3. GENETIC PROGRAMMING 46

Figure 3.4: The crossover operation performed on two parent trees thatare identical.

Figure 3.5: The mutation operation performed on a single individual.

using any of many existing languages and frameworks. Figure3.6 conveys the general

structure of the evolutionary process utilized in genetic programming [73].

In order to achieve and maintain the structure of the syntax trees representing the

CHAPTER 3. GENETIC PROGRAMMING 47

Figure 3.6: Genetic programming flowchart.

individuals being evolved, the GP platform needs to maintain several collections of ob-

jects. Those collections allow for the platform to accurately build and maintain the syntax

trees. In addition, the evaluation methodologies for the system components are speci-

fied for each of the collection types allowing for the execution of evolved programs and

the measuring of their performance. The following collections are maintained by the GP

platform:

• Functions:All the primitive functions to be utilized in the building ofthe genetic

programs must be included in this collection. The definitionof each function in-

cludes the method through which the function is evaluated aswell as the number of

parameters that it operates on. Some functions operate on a single parameters, while

others may operate on two or more. The specification of the number of parameters

allows for the tree-building component of the system to construct the program-trees

utilizing correct functional representations.

• Terminal variables:This collection includes all variables to be used as parameters

CHAPTER 3. GENETIC PROGRAMMING 48

for the specified primitive functions. The variables to be utilized in the evolutionary

process can be of any type; hence, the type of the variable as well as the range of

values it is capable of storing must be included. The specification of the data type

allows the system to properly match variables to randomly selected functions being

inserted in the syntax tree.

• Terminal constants:Any constant value that is to be used as part of the evolved

programs will be added to this collection. As with terminal variables, the data

type of each constant must be specified to allow for the appropriate matching of

constants to functions.

• Nodes: As the syntax tree is being built, the nodes collection keepstrack of all

entities being inserted in the tree. Each node may representa function, a terminal

variable or a terminal constant. A reference to the node occupant, a link to the

parent node, as well as links to children nodes will be included.

• Links: Each link present within the syntax tree will be added to thiscollection and

given a unique numeric identifier. Both the crossover and mutation operations rely

on the selection of random links in order to perform tree alterations. The existence

of this collection facilitates the genetic selection and alteration as each link contains

a reference to the parent node which represents the root of the sub-tree to be used

in the alteration process.

The first step in the evolutionary process is to create the syntax trees for each individ-

ual in the initial population. Trees are generated randomlyby choosing elements from the

preset function, terminal variable or terminal constant collections. If a function is chosen,

the children nodes of the function node are created depending on the number of parame-

ters needed for the function. The creation mechanism then progresses down to each child

choosing random elements to satisfy its own processing needs, and so on. A height re-

striction may be applied to prevent the tree from growing beyond a specific height. For

example, if the maximum desired height is 5, then once the tree reaches a height of 4, only

a terminal may be chosen in order to halt the vertical tree growth. The tree population

process continues until all leaf nodes consist of terminals.

The evaluation of each tree is performed recursively starting at the root then traversing

the tree downwards resolving parameter values. For example, given the syntax tree shown

in Figure 3.7, the evaluation process starts at the root node(node 1). Since node 1 contains

the addition function (+), which requires two parameters, the process moves to node 2 in

CHAPTER 3. GENETIC PROGRAMMING 49

Figure 3.7: Evaluation of the syntax tree.

order to retrieve the value for the first parameter. Node 2 contains the terminal variablex,

so no further resolution is needed for this parameter. Node 3is evaluated next to retrieve

the value for the second parameter. However, since the node contains the multiplication

function (*), the process continues to nodes 4 and 5 to retrieve their values. Since nodes 4

and 5 are terminals then the process terminates. The node values are propagated upward

in the tree until a final solution is reached. The evaluation process ultimately formulates

the following solution to the tree:

x+x∗9 = 10x

3.5.1 Data Fitting

In this section, we provide an illustrative genetic programming process that tries to find a

data fitting equation given a set of data points. For each syntax tree, the associated fitness

is evaluated based on the total error that exists between theset of data points and the tree

representation. The set of data points is shown in Table 3.1,and the associated graphical

representation is shown in Figure 3.8. The main task for the evolutionary process is to

find a syntax tree whose evaluation yields the smallest totalerror in relation to the original

data set. The fitness functionf for individual i is given by

fi =
n

∑
k=1

|treei(k)− p(k)| (3.1)

wheren is the number of data points, p(k) is the data value at position x = k, and

treei(k) is the evaluation of the syntax tree of individuali for the valuex = k. The set of

functions F, terminal variables V and terminal constants C are given by

CHAPTER 3. GENETIC PROGRAMMING 50

x f(x)
1 0.94
2 -0.98
3 -2.4
4 -1.70
5 1.234
6 3.05
7 1.39
8 -0.71
9 -2.73
10 -2.95
11 0.01
12 2.92
13 3.57
14 0.11
15 -2.44

Table 3.1: Set of data points for GP fitting.

-3

-2

-1

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16

f(
x)

x

Figure 3.8: Graphical representation of the set of data points for GP fitting.

F={+,-,*,/,SIN,COS,TAN,SQRT}

V={x}

C={R} range = [0,15]

CHAPTER 3. GENETIC PROGRAMMING 51

The population size of each generation should be chosen large enough to allow for

sufficient diversity in order to achieve reasonable performance and eventual optimal con-

vergence. The population size is usually chosen to include thousands or even millions

of individuals. The larger the functional and terminal component set, the larger the pop-

ulation should be. For the purposes of this example, we only use four representative

individuals to illustrate the progression of the evolutionary process. Table 3.2 shows the

four syntax trees, the plot of the functional representation of each tree along with the plot

of the data points. Table 3.3 shows the fitness value of each ofthe four syntax trees using

Equation 3.1.

Figure 3.9: The crossover operation performed on syntax trees (b) and (c) yielding the
tree representation of equationcos(x)∗√x.

A crossover operation performed on syntax treesb andc (Figure 3.9) yields the func-

tion cos(x) ∗ √x which represents an accurate data fitting function for the given data.

Table 3.4 shows the final fitness value achieved by evaluatingthe resultant syntax tree.

The graphical representation is shown in Figure 3.10.

3.6 Limitations of Genetic Programming

Genetic programming offers a more flexible approach than genetic algorithms due to its

ability to develop a method for solving a problem instead of apoint solution. However,

CHAPTER 3. GENETIC PROGRAMMING 52

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

f(
x)

x

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

f(
x)

x

(a) {7+11x} (b) {cos(x)∗9}

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16

f(
x)

x

-3

-2

-1

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16

f(
x)

x

(c) {√x−6} (d) {x/8}

Table 3.2: Four representative syntax trees, the plot of the functional representation of
each tree, as well as the plot of the original data points.

CHAPTER 3. GENETIC PROGRAMMING 53

Function fi =
n
∑

k=1
|treei(k)− p(k)|

(a) 7+11x 1,425.69

(b) cos(x)∗9 55.18

(c)
√

x−6 49.69

(d) x/8 30.89

Table 3.3: The fitness evaluation of the four representative syntax trees.

Function fi =
n
∑

k=1
|treei(k)− p(k)|

cos(x)∗√x 5.58

Table 3.4: The fitness evaluation of the syntax tree representation ofcos(x)∗√x.

the unified representation of the genome and phenom utilizedby the framework causes

significant drawbacks. The main structure of GP-based evolution results in the following

limitations:

• The solutions produced by genetic programming tend to drifttowards larger and

slow solutions on average [114]. Hence, a solution might be ultimately reached, yet

no guarantee exists that the presented solutions is the mostefficient.

• As the complexity of the solution increases, the reproduction of results becomes

very difficult to achieve by applying modifications. Minor changes in the syntax

tree could result in major changes in its associated functional representation.

• Genetic programming also suffers from the possible presence of insufficient di-

versity and the possibility of reaching sub-optimal results [30]. This possibility

increases significantly as the size of the search space increases.

CHAPTER 3. GENETIC PROGRAMMING 54

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16

f(
x)

x

Figure 3.10: Final data fit using functioncos(x)∗√x.

• Most significant results produced by GP frameworks were obtained through the uti-

lization of massive parallelism in order to achieve the processing power necessary

for computing solutions within a reasonable time frame. Such requirements make

the framework usage possibly prohibitive from a practical sense.

3.7 Gene Expression Programming (GEP)

Ferreira created Gene expression programming (GEP) [37] toovercome some of the lim-

itations of GP. The main contribution of GEP is in its representational separation. GEP

allows for the separate representation of the genome and phenom, which facilitates the

performance of the genetic operations without losing the flexibility of evolving a method

for solving the problem instead of a point solution. The genome is structured as a linear

symbolic string of fixed length and is converted to its associated expression tree (ET) rep-

resentation utilizing a specialized language known as Karva. Despite the fixed length of

each symbolic string, different length expression trees could be produced depending on

the structure of the string.

Consider the gene representationg, of the function setF , variable setV and constant

setC:

CHAPTER 3. GENETIC PROGRAMMING 55

F={+,-,*,/}

V={a,b}

C={R} range = [0,5]

The following is an expression string representation ofg:

+ + * a b 3 + a + 4

The translation from an expression string to an expression tree starts at the left most

symbol in the string which represents the root of the tree. The process then moves to

the right populating the parameters of functions placed at each level until all function

parameters have been populated. Figure 3.11 shows the expression tree for the above

expression string.

Figure 3.11: Expression tree representation for the expression string+ + * a b 3 + a + 4.

The expression string of a gene is divided into two parts. Thefirst part is the headh,

which is composed of functions and terminals, while the second part is the tailt composed

only of terminals. The length oft is a function ofh following the formula

t = h(n−1)+1 (3.2)

where n is the number of arguments of the function of the highest argument count.

Using the sets F,V and C, we define another geneg described by the string

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
/ a * + / * b 9 * 3 a a b b 3 a 1

CHAPTER 3. GENETIC PROGRAMMING 56

In the string listed, the length ofh = 8. Givenn = 2, the length oft = 8(1)+ 1 = 9.

Although the gene contains seventeen symbols, only the treerepresentation determines

the last symbol actually utilized. Figure 3.12 shows the representation for the string given.

The figure demonstrates how only thirteen symbols are utilized in the expression tree.

Figure 3.12: Symbol utilization in the expression tree.

As crossover and mutation operations cause alterations to the expression string, the

number of symbols being utilized varies depending on the structure of the resultant string.

For example, given a mutation operation that changes the tenth symbol from a 3 to a+,

the resultant string will be structured as follows:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
/ a * + / * b 9 * + a a b b 3 a 1

The expression tree of the modified string is shown in Figure 3.13. We notice that the

height of the tree has grown as the+ symbol replaces the 3 at the tenth position. We also

notice that the number of utilized symbol has grown from 13 to15.

3.8 GEP Genetic Operators

One of the main advantages of GEP lies in its ability to acceptcommon genetic operators

as they are normally performed on linear chromosome strings. The separation of the chro-

mosome from its tree representation allows for genetic operators to be applied directly to

CHAPTER 3. GENETIC PROGRAMMING 57

Figure 3.13: Altered expression tree after applying the mutation operator.

the expression strings without having to take the expression tree into consideration. In ad-

dition to the regular GEP selection methods, which are identical to the selection methods

utilized by GA and GP , the following are the main genetic operators used in GEP:

• Mutation

• Recombination

• Transposition

As long as the expression string rules for the head and tail structuring are followed, GEP

guarantees that any alterations done to the expression string by using any of the genetic

operators would still yield an expression tree that is structurally correct.

3.8.1 GEP Mutation

The Mutation operator may be applied to any part of the chromosome without violating

any of the organizational rules. The symbols in the head may be exchanged with any

function or terminal. However, symbols in the tail may only be exchanged with termi-

nals. A mutation parameterpm is usually used to determine the probability of mutation.

CHAPTER 3. GENETIC PROGRAMMING 58

GEP does not impose any restrictions on the number of mutations per chromosome, and

any number of mutations should still produce a structurallycorrect expression tree [37].

Figures 3.12 and 3.13 show the before-mutation and after-mutation tree representations

of the string

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
/ a * + / * b 9 * 3 a a b b 3 a 1

Although the mutation only changed a single symbol (at the tenth location), it be-

comes evident how the mutation operator can cause drastic alterations to an expression

tree increasing or decreasing its depth and possibly changing its structure.

3.8.2 GEP Recombination

GEP recombination is comparable to the GA and GP crossover operators where two indi-

viduals are selected and the genetic material is swapped between them. A recombination

probability parameterpr may also be used to determine the frequency of recombinations

taking place. GEP utilizes three different types of recombinations:

• One-point recombinationutilizes a single random mutation point and all the genetic

material starting at this random points is swapped between the two individuals. For

example, given the following two individuals:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
/ a * + / * b 9 * 3 a a b b 3 a 1
+ * / + b a 3 a b a a b 5 1 a 2 a

A random mutation at location 4 would yield the following twochromosomes:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
/ a * + b a 3 a b a a b 5 1 a 2 a
+ * / + / * b 9 * 3 a a b b 3 a 1

• Two-point recombinationutilizes two random mutation points instead of only one.

The genetic material between the two points is swapped between the individuals.

Given the original two individuals shown above and the two recombination points

at locations 2 and 9, the resultant individuals would be structured as follows:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
/ a / + b a 3 a b a a a b b 3 a 1
+ * * + / * b 9 * 3 a b 5 1 a 2 a

CHAPTER 3. GENETIC PROGRAMMING 59

• Gene recombinationis used when the chromosome is partitioned into several genes.

The genetic material is then swapped along the boundaries ofa complete gene cho-

sen at random. Consider the following two individuals divided into two separate

genes as follows:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
/ a * + / * b 9 * 3 a a b b 3 a 1 b a 2
+ * / + b a 3 a b a a b 5 1 a 2 a 4 0 a

A gene recombination of the second gene would yield the following resultant indi-

viduals:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
/ a * + / * b 9 * 3 a b 5 1 a 2 a 4 0 a
+ * / + b a 3 a b a a a b b 3 a 1 b a 2

Utilizing only gene recombination without using other mutation or recombination

methods limits the evolutionary process as no new genes could be created. In this

case successful evolution would be dependant on the size of the population as an

extremely large population would be the only means for having enough genetic

diversity among individuals [38].

3.8.3 GEP Transposition

GEP transposition operates on a single chromosome randomlytaking a section of the

genetic code and duplicating it to another part within the same chromosome. In essence,

the operator duplicates some of the genetic material withinthe genome, and at the same

time, another part is deleted (replaced by the transposed section). For example, given the

following chromosome

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
/ a * + / * b 9 * 3 a a b b 3 a 1 b a 2

the section starting at positions 3 and ending at position 5 is chosen at random to be trans-

posed. As the section is transposed downstream to position 8, the resultant chromosome

is as follows:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
/ a * + / * b 9 + / * b b 3 a 1 b a 2

The transposition application should maintain the head andtail rules. A function

should never be transposed to the tail section of the chromosome in order to maintain the

correct structure for the resultant expression tree.

CHAPTER 3. GENETIC PROGRAMMING 60

3.9 Conclusion

Genetic programing as well as gene expression programing provide a flexible platform for

the evolution of programmatic solutions to complex problems. The complexity of devel-

oping articulated robotic control, however, would requirea much higher level of diversity

than what GP and GEP could offer. The use of massive parallelism allows for the utiliza-

tion of very large populations of possibly millions of individuals, yet such computational

power is not readily available in dynamic learning environments. Due to such limitations,

the possibility of reaching suboptimal control strategiesis quite high due to the very large

search space present. In order to utilize genetic methods for the successful development

of robotic controllers for complex articulated motion control, constructs are needed for

the intelligent bounding of the problem search space. Such constructs would decrease the

time needed to reach a solution and also decrease the possibility of reaching suboptimal

results.

Chapter 4

GUIDED GENETIC EVOLUTION

4.1 Introduction

In this chapter, we formally define theGuided Genetic Evolution(GGE) platform. The

platform introduces new concepts for the evolution of autonomous robotic controllers

for the real-time control of articulated structures. GGE builds upon genetic programming

methodologies with the inclusion of specialized algorithms for the evolution of articulated

robotic controllers and guiding the evolutionary process in order to achieve faster conver-

gence time and minimize the possibility for suboptimal convergence. Genetic guidance is

achieved through the minimization of the problem search space by reducing the problem

parameter count and applying constraints to the evolutionary process while maintaining

the genetic diversity within the population.

Guided genetic evolution is motivated byimitation-based learningprinciples, yet it

circumvents the current existing limitations that render such principles unachievable in a

practical sense. The framework allows the designer to incorporate articulation patterns

and constraints to be followed by the agent on an imitative basis. This approach guides

the genetic process by biasing exploratory moves towards predefined areas of the search

space. Since the evolutionary constraints are presented inan explicit sense, thecorre-

spondence problemassociated with the imitation process does not apply.

The GGE platform allows for the expansion of the evolutionary process into a higher

more complex level where comprehensive state determination and transitioning may be

achieved. Complex states may be obtained through the genetic evolution of complex

action sequences. GGE includes constructs for the specification of the agent’s genetic

structure as well as the guidelines for the evolutionary path. Constructs for the specifi-

cations of the concurrency of execution threads are also present in the genetic process in

order to maximize an individual’s fitness through the dynamic optimization of execution

sequences.

Several types of constraints may be applied to the genetic process in order to achieve

the desired evolutionary guidance. The level of commitmentto any of the specified con-

straints maybe predefined or managed dynamically as the agent’s environment changes.

The evolutionary process aims to optimize the constraint parameters in order to maxi-

mize fitness. Such optimizations may be achieved through training before the agent’s

61

CHAPTER 4. GUIDED GENETIC EVOLUTION 62

life cycle begins, while others maybe developed through theuse of dynamic optimization

techniques during the agent’s life cycle through the interaction between the agent and the

environment.

4.2 Genetic Structure

In this section, we discuss the general genetic structure associated with the GGE plat-

form. Further formalization of the different structural constructs will be discussed later

in the chapter. The GGE platform is based upon genetic programming principles; hence,

the learning methodologies utilized are based upon the genetic evolution of individuals

over multiple generations until the system converges to a desired level of performance.

In addition to the evolutionary constraints applied to the genetic process, core genetic

operators are applied to each generation of individuals allowing the overall fitness to pro-

gressively increase over evolutionary time. Figure 4.1 demonstrates the overall genetic

process utilized for the structured evolution of individuals.

Figure 4.1: Overall genetic process utilized for the structured evolution of individuals.

Real coding (RCGA) is utilized for the representation of chromosomes, so the genetic

CHAPTER 4. GUIDED GENETIC EVOLUTION 63

operators utilized are geared towards the manipulation of real-valued parameters. Three

main reasons motivate the use of RCGA in guided genetic evolution:

• The nature of the robotic control problem requires the use ofreal-valued param-

eters. RCGA utilization facilitates the structuring of thegenetic process as the

genomes represent actual parameters that are applied directly towards a solution.

• The size of the search domain for the control problem is significantly large. The

use of RCGA methodologies allows for the exploration of the associated domain

without loss of precision.

• The optimization of the different control strategies requires the utilization ofgrad-

uality in order to progressively achieve more optimal results. RCGA methods are

most apt for achieving the required gradual fine tuning of problem parameters.

4.2.1 Initialization

The first generation of individuals is initialized using a purely random process to guar-

antee an even distribution over the target search space, given that the population size

is of an appropriate size1. On the other hand, if the population size is limited, a non-

clustering method is used to promote the needed population diversity. The presence of an

appropriate level of diversity within the initial population greatly affects the solution con-

vergence speed as well as the quality of the results. The initialization process is structured

to follow the evolutionary constraints placed on the genetic process; hence, prior to the

application of any genetic operators, individuals are placed in areas of the search space

that maximizes their chances of achieving significantly higher fitness values. Such selec-

tive initialization also significantly decreases convergence times as individuals are leaped

forward on the evolutionary scale as they are placed in desirable areas of the search space.

4.2.2 Selection

GGE utilizes afitness-proportionate selectionmethod based on theroulette-wheelselec-

tion principles. Once the fitness of each individualc j is evaluated, the following formula

is used to calculate the selection probabilityP(c j):

P(c j) =
ϕ(f (c j))

m
∑

k=1
ϕ(f (ck))

(4.1)

1The significance of population size is directly related to the nature of the problem.

CHAPTER 4. GUIDED GENETIC EVOLUTION 64

wheref (c j) is the fitness value for individualc j , m is the number of individuals in the

generation, andϕ : R → R
+ is a non-decreasing transformation used to shift the fitness

values toR+. The transformation is performed only for selection purposes without vary-

ing the reported fitness values. This guarantees the abilityto monitor the unaltered fitness

of individuals and the population as a whole from one generation to the next.

In some instances, a need exists for reversing the resultantprobabilities. For example,

if the goal of an experiment is to keep a robotic agent as closeto the point of origin

as possible, then either the fitness function would have to beinversely proportionate to

the distance from the origin, or it may be proportionate to the distance and a probability

reversal may be applied to produce correct selection results. The formulate for probability

reversal is defined as

P(c j) =
(1−P(c j))

m
∑

k=1
(1−P(ck))

(4.2)

Althoughfitness-proportionate selectiontends to favor individuals with higher fitness

values, the process does not eliminate the possibility of selecting individuals with lower

fitness. This deviation from pureelitist selection2 acknowledges the need for the applica-

tion of comprehensive randomness in the evolutionary process, as the eventual selection

of individuals with low fitness is an essential component in the system exploratory strat-

egy.

4.2.3 Crossover

The GGE crossover operator uses RCGA methodologies to alterthe genetic encoding of

individuals. The operation promotes the replication of desirable traits among individuals,

as it operates on two parent individual swapping genetic material between them in order

to produce offspring. GGE utilizes the BLX -α RCGA crossover operator, which allows

for the problem parameters to be gradually focused by selecting a random gene value

from the expansion of interval[min(x1
i ,x

2
i),max(x1

i ,x
2
i)] wherex1

i represents genei for the

first parent individual andx2
i represents genei for the second. This method allows for the

expansion of the selection interval by an expansion parameter α. The BLX - α crossover

interval is defined as

[min(x1
i ,x

2
i)− I ·α,max(x1

i ,x
2
i)+ I ·α]

2Elitist selection guarantees the selection of the most fit individuals of each generation.

CHAPTER 4. GUIDED GENETIC EVOLUTION 65

Where

I = max(x1
i ,x

2
i)−min(x1

i ,x
2
i)

The α parameter is problem specific and must be chosen carefully toallow for the

gradual expansion of the target domain without deviating from the evolutionary results

already achieved. The dynamic management of theα parameter is included in the GGE

framework. An initialα value is chosen taking into consideration the overall rangeof

possible values allowed for the specific parameter to be evolved. The parameter is then

gradually decreased as evolution proceeds in an effort to further focus the results. Let

gmaxbe the maximum generation number desired,g is the current generation number, and

αmin andαmax are the minimum and maximumα values respectively, the dynamically

managed BLX -α interval is defined as

[

min(x1
i ,x

2
i)− I ·

(

αmax−
g · (αmax−αmin)

gmax

)

,max(x1
i ,x

2
i)+ I ·

(

αmax−
g · (αmax−αmin)

gmax

)]

The valuesαmin andαmax maybe predefined by the designer, or they maybe automat-

ically generated by the GGE platform as a percentage of the search domain size. The

α value may still be fixed over all generations by supplying thesame identical value for

αmin andαmax.

4.2.4 Mutation

In order to guarantee continued population diversity, GGE uses a mutation operator that

alters the genetic encoding of individuals on a singular basis relying on a predefined

mutation probabilitypm. The mutation operator allows for the evolutionary processto

take exploratory moves into areas of the search space that may have not been explored

previously. Such moves prevent any area of the domain from being out of evolutionary

reach. It also reduces the probability of suboptimal convergence and increases the quality

of the results. Thepm value is problem specific and must remain small in order to preserve

evolutionary results while still exploring different areas of the search domain. In addition

to the mutation probabilitypm, the mutation operator requires the two valuesmmin and

mmax defining the bounds of the target domain for the specific gene.The random value

r is chosen from the interval[mmin,mmax]. Non-uniform mutation is then applied to the

chosen geneci with probabilitypm following one of the following two formulas:

c′i = xi +∆(t,bi −xi)
c′i = xi −∆(t,xi −ai)

CHAPTER 4. GUIDED GENETIC EVOLUTION 66

where

∆t(t,x) = x·
(

1− r

(

1− g
gmax

)b
)

As the generation numberg approachesgmax, the impact of the random valuer on the

gene decreases. The valueb may be used to increase or decrease the significance of the

generation number in the application of the mutation operator.

4.3 Trigger Networks

In this section, we present a new type of connectionist network model labeledTrigger

Networks, or T-Nets, developed as the representational core of guided genetic evolution.

This connectionist model is the main representation vehicle for the encoding as well as

the evolution of agent control strategies. T-Nets allow forthe representation of all aspects

of the control problem in an evolvable manner. Genetic evolution methodologies are then

applied to the model in order to optimize the control strategy by altering the problem

parameters until the predefined fitness criteria has been met.

Trigger networks utilize a hierarchical structure linkingmultiple levels of subnets

using evolvable links. The hierarchical representation allows for the structuring and evo-

lution of complex behaviors based on simpler actions and behaviors represented by other

parts of the network. Although guiding constructs are used as a mechanism for reduc-

ing the complexity of the problem search space, the essence of the evolutionary process

remains intact allowing for the genetic optimization techniques to structure the network

according to the performance of individuals without any external intervention beyond the

initial design.

Figure 4.2 demonstrates the general evolutionary cycle of trigger networks. The de-

tailed description of a robotic agent is encoded as a triggernetwork which represents all

the actions the agent could execute as well as all the possible relationships that govern

the execution of such actions. Each encoded trigger networkrepresents a control strategy

to be utilized for agent control. The performance of each trigger network is evaluated

through the use of one or more fitness functions which play a crucial role in the selective

evolution of network populations.

Several essential building blocks are utilized as constructs to be combined as an evolv-

able trigger network. A T-Net can be structured as simple as asingle action to be per-

formed by an agent or as complex as hundreds or even thousandsof subnetworks rep-

resenting different behavioral strategies and combined together into a single agent con-

CHAPTER 4. GUIDED GENETIC EVOLUTION 67

Figure 4.2: Trigger network evolutionary cycle.

troller. The following sections describe the different elements that represent the core

building blocks utilized in the construction of trigger networks.

4.3.1 Action Nodes

Action nodesrepresent the set of primitive behaviors performable by an agent. In an

articulated robotic structure, a primitive action represents the actuation of a joint motor

setting the joint bodies at a specific relative angle. In T-Nets, an actionai is represented

by the following symbol:

wherei is the unique ID of the action being referenced.

Each action represented within the network carry several internal evolvable parame-

ters used in the evolutionary process in an aim to optimize performance. For a primitive

joint motor actuation action, the internal evolvable parameters are as follows:

• The target angle vector to be reached by the joint. The value for this parameter has

to fall between the low and high constraint vectors placed onthe joint at design

time. The number of vector elements depends on the number of axis utilized by the

joint.

• The maximum torque vector to be applied to the joint bodies. This parameter rep-

resents the strength of the motor, ormuscle, in control of the joint.

CHAPTER 4. GUIDED GENETIC EVOLUTION 68

• The maximum allocated time duration for the completion of the desired action. This

parameter represents the urgency associated with action execution.

• The input trigger vector array which determines the input trigger points for the

node.

• The output trigger vector array which triggers the execution of other dependant

actions.

• The priority value used to determine the node priority levelin relation to other

simultaneously executed entities within the network.

4.3.2 Trigger Vectors

Trigger vectorsare used to represent dependencies as well as execution sequencing within

the network structure. Any complex action performed by an agent consists of multiple

primitive actions executed using a specific concurrency andsequencing structure. Any ac-

tion may contain zero or more trigger vectors connected to other action nodes demonstrat-

ing execution dependency. A trigger relationship is demonstrated by an arrow connecting

two nodes. Figure 4.3 shows multiple possible trigger vector representations.

Figure 4.3: Trigger vector representations. Left: trigger dependency of actionb on action
a. Middle: trigger dependency ofa onb. Right: no trigger dependency present.

The direction of the trigger vector, determined by the sign of the vector magnitude

value, demonstrates the dependency present between actions. The magnitude of the vector

determines the trigger point relative to the execution duration of the trigger source action.

Given the dependency of actionb on actiona, if a has a total associated time duration

ta, then the magnitude of the trigger vector~v would determine the point in time when the

trigger becomes active. If|~v| = 0.5, anda is triggered at timet0, thenb is triggered at

time t0+0.5ta.

CHAPTER 4. GUIDED GENETIC EVOLUTION 69

Trigger vectors may also be utilized to commence the executions of actions simulta-

neously. A vector magnitude of zero would causeb to trigger as soon asa is triggered.

Similarly, actions may be executed in succession by setting|~v| = 1. In this case,b would

commence immediately aftera has terminated. Setting|~v| > 1 would cause a delay after

the termination ofa beforeb is executed, and the delay is defined as

ta · (|~v|−1)

Each action nodea contains an input vector array labelediVEC referencing the source

nodes on which a dependency exists. In order for an action to commence execution, all

iVEC elements must be triggered by their respective source nodes. Let actiona hold an

iVEC array of length two containing the two entries~vb and~vc referencing the action nodes

b andc respectively. This relationship means that actiona is dependant on bothb andc

in its execution. In other words, bothb andc must triggera based on the magnitude of

their respective trigger vectors, and only then maya start its execution cycle.

We define the fluentEX to state the executability of any action within the environment.

The array iVEC holds triggering information denoted by a zero for each element awaiting

a trigger signal from the source node and a 1 if the trigger signal has already been received.

The fluentEX is defined as

∀a,EX(a) →
[|aiVEC|

∑
k=1

aiVEC(k) = |aiVEC|
]

(4.3)

Each action nodea also contains an output vector array labeledoVEC that holds

trigger information for other nodes that has dependency ona. Each element ofoVEC is

an independent entity that holds both a reference to the target node as well as the trigger

magnitude indicating the desired trigger point. The elements are continuously processed

during execution, and once the trigger point has been reached, the associated target node

is immediately triggered. Figure 4.4 shows several possible dependency configurations

demonstrating multiple action nodes and trigger vectors.

4.3.3 Root and Relay Nodes

Root and Relay nodesare a special type of action nodes. The nodes do not contain an

internal executable action. A root node is unique, as it identifies the entry point for ex-

ecuting the entire trigger network. Each trigger network may contain only a single root

node which holds anoVECarray connected to other relay or action nodes which are to be

CHAPTER 4. GUIDED GENETIC EVOLUTION 70

Figure 4.4: Multiple T-Net trigger connections. Left:a is triggered by bothb andc.
Middle: a triggers bothb andc. Right: a triggersb, andb triggersc.

triggered at the beginning of the network execution cycle. However, the root node does

not hold aniVEC array, since it is triggered directly to commence network execution.

Relay nodes hold aniVEC array which receives trigger signals from other action or

relay nodes. They also hold anoVECarray for triggering other actions. Usually, a relay

node is utilized as a subnetwork header. When a subnetwork representative relay node is

triggered, it initiates the execution of the entire behavior. TheoVECelement magnitudes

are then utilized to determine the trigger points for the execution of individual actions

within the subnetwork.

The network root node is represented by the following symbol:

The relay noderi is represented by the following symbol:

Once a particular behavior has been genetically achieved, the subnetwork associated

with the behavior may be represented graphically using onlyits header (relay node) repre-

sentation. As the number of behaviors increase, such compact display allows for the visual

simplification of the network. The same principles are followed as multiple behaviors are

combined into a single complex behavior, as the end result may also be represented using

a single relay node.

4.3.4 Reset Nodes

Reset nodes are also a special type of action nodes that do notcontain an internal action to

be executed. However, a reset node is responsible for returning the state of the network to

CHAPTER 4. GUIDED GENETIC EVOLUTION 71

an initial state that existed before the network was first triggered. The utilization of reset

nodes is crucial to the execution of cyclic behavior within the network. For example, in

order for a biped robot to execute a walking behavior, the agent is trained to step with

one leg, then the other, then the whole process is repeated toachieve the desired goal of

walking.

The network reset node is represented by the following symbol:

A reset node may be used to reset the network then trigger the root node to commence

network execution once more, or it may be used to trigger a specific relay node in or-

der to cycle through a specific behavior while the rest of the network follows its normal

execution path.

4.3.5 Subnetworks

A subnetwork is a part of a trigger network that represents a grouping of primitive actions

combined into a single behavior. A complete subnetwork headered by the relay noderi

is shown in Figure 4.5. An unguided subnetwork representinga desired behavior would

initially contain the following elements:

• Action nodes representing all possible primitive actions performable by the agent.

Without the presence of genetic guidance, a T-Net has no knowledge of which

actions might contribute towards the fulfilment of a particular goal or the execution

of a desired behavior. Hence, all possible actions are included in an aim that the

self-organization genetic process would eliminate irrelevant nodes.

• Trigger vectors connecting all possible two-node groupings of actions in both di-

rections. Although not all trigger vectors will be needed, the unguided network

has no way of knowing which of the vectors would eventually berelevant to the

achievement of the desired goals.

The evolutionary process itself aims to eliminate irrelevant trigger vectors and action

nodes along the evolutionary path. As particular actions ordependencies within the sub-

net prove unnecessary or counter productive in relation to the achievement of a desired

goal, the nature of the genetic process helps eliminate suchentities while maximizing the

overall fitness of individuals. As theiVEC elements of a particular action node are all elim-

inated, the action becomes irrelevant as it will never be executed during the agent’s life

CHAPTER 4. GUIDED GENETIC EVOLUTION 72

Figure 4.5: Representation of the subnetworkri .

cycle. Hence, this particular action may be removed withoutany impact on the behavior

of the network.

Figure 4.6: Connectivity of multiple subnetworks within a single trigger network.

Figure 4.6 shows a more complex representation of a T-Net consisting of the three

subnetworksr1, r2, andr3. The figure demonstrates the structuring of complex behavior

based on simpler behaviors that consist of several primitive actions executing simultane-

CHAPTER 4. GUIDED GENETIC EVOLUTION 73

ously. This hierarchical structuring may be utilized in building more and more complex

behaviors based on more primitive subnetworks.

4.3.6 Concurrency

A typical rigger network may have several actions executingsimultaneously at any given

moment in time. A priority value is given to every action or relay node in order to de-

termine nodes priority level over other actions executing at the same time. For example,

given that being balanced is a current goal the agent is pursuing, then no action execution

should be allowed that would affect the agent’s ability to remain balanced. Hence, all

posture alterations has to be performed prior to the balancing behavior being executed

in order for the system to correct initiatives that would negatively affect its high priority

balancing goal.

The trigger network consisting of the two subnetworksr1 and r2 is shown in Fig-

ure 4.7. Each relay node contains its priority valuep denoting its priority level relative to

other concurrent executions.

Figure 4.7: Trigger network consisting of the two subnetworksr1 andr2.

Once the network root node has been triggered, it will cause the immediate and si-

multaneous triggering of both subnetworksr1 and r2 given that the magnitude of their

associated trigger vectorsv1 andv2 are both zero. A vector magnitudex that is greater

than zero causes a delay ofx units before the associated action is executed. This delay is

useful in achieving execution strategies involving actions which require different starting

points.

The two subnetworks execute independently in an effort achieve their respective goals.

However, prior to each execution cycle, the subnetworks aresorted according to their

CHAPTER 4. GUIDED GENETIC EVOLUTION 74

priority values to determine the execution order of each behavior 3. Subnetworks with

the lowest priority execute first giving higher priority behaviors the ability to correct any

negative effects caused by previous actions. Similarly, actions within any subnetwork are

also given priority values to determine their own executionorder.

In the example given, having a priorityp = 0, subnetworkr2 executes first by issuing

its associated actuation commands in order to achieve its behavioral goal. Subnetworkr1,

having a higher priority, then proceeds to issue its own commands correcting any negative

actions that might have been issued byr2.

4.4 Action Types

Several action types may be utilized as part of the overall control strategy. The types of

actions used depend on the specific behavior being implemented and the associated be-

havioral goals. An action may consist of a primitive commandbeing issued to a specific

joint, or it may contain a more complex algorithm for maintaining a certain configuration

of joints over a period of time. Actions themselves are also subject to evolutionary alter-

ations in an aim to achieve the most optimal command or algorithm definition to be used

for solving the control problem.

4.4.1 Direct Joint Control

The first type of action to be discussed involves sending control signals to a specific joint

forcing the joint into a particular configuration. The command is typically given as a

combination of the desired joint angles for all axis controlled by the joint as well as the

urgency involved in achieving the target angles. The following types of direct joint control

signals are available:

• Hold: This command prompts the rotation of joint bodies in order toachieve the

desired angle given. The torque applied to the bodies would depend on the urgency

associated with achieving the desired configuration. The angle vector specified

would be held by the joint until a different command is given that requires a differ-

ent configuration (Figure 4.8). A resistance parameter may also be used to specify

the maximum amount of torque allowed for maintaining the target angle.

3Although execution ordering exists, it does not imply any sequencing relating to the subnetworks unless
direct trigger vectors exist between them. The execution ordering, however, decides on the order for the
application of low level action commands or actuation signals

CHAPTER 4. GUIDED GENETIC EVOLUTION 75

Figure 4.8: Direct angle control of a specific joint axis.

• Free: A joint would usually be given low and high stop points depending on the

constraints of the articulated structure. Ajoint-freecommand maybe issued for all

axis controlled by the joint or for any single axis. The command prompts the agent

to remove any constraints placed on the joints except for thelow and high stop

points restricting the rotational motion of the bodies.

4.4.2 Joint Control Strategy

As an expansion of joint control, more complex localized goals may be embedded within

an action node along with a strategy to achieve it. For example, if the desire is to elim-

inate the moment due to gravity in relation a particular axis, the associated joint may be

invoked to perform continuous joint adjustments until the desired balance is achieved.

For example, if an agent is on a slope at the time of behavior execution (Figure 4.10), the

exact target angles for keeping steady balance are not known; however, the proper angles

may be determined by following an overall strategy to reducethe moment on the body.

Figure 4.9: Joint control strategy for a body balancing behavior.

Several control strategies may be used in combination to achieve a desired effect. The

CHAPTER 4. GUIDED GENETIC EVOLUTION 76

following list identifies some of the possible strategies which could be applied as part of

a behavior:

• Eliminate moments about one or more axis of a particular body.

• Maintain primary normal vectors of a particular body in a certain configuration.

• Maintain even contact between two bodies; for example, we may desire to maintain

even contact between the agent’s foot and the ground. As an uneven pressure dis-

tribution is sensed, corrective measures may be taken to adjust the position of the

foot.

4.4.3 PID Control

PID control is a very effective method for producing controloutput signals for guiding

a control process towards a specific target. PID stands for Proportional, Integral, and

Derivative, and the three terms represent the three phases utilized for the calculation of

corrective control signal. Each of the three component playan important role in the

overall control strategy utilizing and acting on differentparts of the control process.

Figure 4.10: Components of a PID controller.

PID control utilizes a continuous loop where measured controller input is compared

with a target reference point. The difference, or error, between the two values is the basis

for calculating a new output control signal in an effort to reduce the error. In addition to

basing the control signals on the error value, the controller also utilizes the accumulation

of error values as well as the error rate of change in order to produce the most optimum

and stable control strategy. The PID controller loop consists of three main phases:

• Sensory input relays system state,

CHAPTER 4. GUIDED GENETIC EVOLUTION 77

• Controller calculates output signal based on input values,PID parameters, and con-

trol history,

• Controller issues output signals through control channels.

The parts of the PID controller, working in unison, react according to the present, past

and future of the control process. The three partitions are defined as follows:

• Proportional: Reacts to the current state of the system. The process simplymea-

sures the current state and compares it to the desired reference point producing an

error valuee. The output signal is proportional to the error value using the following

equation:

up = Kp ·e (4.4)

whereup is the proportional output signal, andKp is a constant parameter repre-

senting theproportional gain.

• Integral: Uses the history of error build-up to alter the output signals in an effort

to reach the desired reference point. The integral portion of the controller helps

reduce system oscillation that may occur due to overshooting the desired target

configuration. The integral output signalui is defined as:

ui = Ki

∫

e·dt (4.5)

whereKi is a constant parameter representingintegral gainwhich controls the sig-

nificance of error buildup in the overall control strategy.

• Derivative: Utilizes the first derivative of the error valuee to measure the respon-

siveness of the system to the control signals being issued. The derivative output

signalud is based on the negative constant parameterKd which representsderiva-

tive gainand is defined as:

ud = Kd
de
dt

(4.6)

The PID controller output is calculated as the sum of the three control parts and is defined

as:

u = Kp ·e+Ki

∫

e·dt+Kd
de
dt

(4.7)

The three PID parametersKp, Ki, andKd play a crucial role in determining the over-

all behavior of the controls strategy. The fine tuning of the parameters may drastically

increase the accuracy and stability of the control system. Hence, all three parameters are

CHAPTER 4. GUIDED GENETIC EVOLUTION 78

genetically evolvable for each action within the trigger network. If an action is chosen to

be controlled by a PID controller, the PID parameters are initialized randomly, then the

genetic process works on optimizing the output signals based on the performance of the

control strategy. The performance is measured based on an evaluation function specific

to the type of action being carried out.

4.5 Trigger Network Evolution

The evolution of trigger networks is based on the optimization of overall agent perfor-

mance through the fine tuning of behavior inclusion, action parameters, and trigger vec-

tors properties in each part of the network. Without the utilization of guidance constructs,

all the different network parameters are initialized usingrandomly chosen values. As

the performance of individuals within each population is measured, gradual changes are

made to the network in an effort to optimize performance.

4.5.1 Evolution of Trigger Vectors

Trigger vector magnitudes and activation parameters are used to determine the depen-

dency levels and properties among network components. Initially, trigger vectors connect

all network components and their magnitudes are initialized randomly. An evolvableac-

tivation parameter is utilized for each trigger vector to allow the system to eliminate the

vector dependency as part of the evolutionary process. The genetic operators utilized may

alter the trigger connections in any of the following ways:

• The relevancy of a trigger vector may be altered through the manipulation its ac-

tivation parameter. If all input trigger vectors of an action become disabled, the

action becomes isolated and is not used in the execution of the behavior.

• The trigger vector magnitude may also be altered by the genetic process. The vector

magnitude determines the sequencing of action execution asit dictates the point in

time at which a dependant action starts its execution cycle.Vector magnitudes may

be altered to cause actions to start execution in synch, in succession, or utilizing

any other configuration that may be applicable. The direction of the vector could

also be altered to reverse the dependency direction betweentwo nodes.

The possibility does exist for the eventual presence of circular dependency within the

network, and if such a scenario occurs, behavior progression would simply halt as action

nodes wait on a trigger signal that would never materialize.Such a situation takes place

CHAPTER 4. GUIDED GENETIC EVOLUTION 79

when trigger vectors follow a circular path where an action is indirectly dependant on it-

self. Figure 4.11 demonstrates the existence of such a scenario. In the presented network,

actiona1 is triggered by an outside vector as well as another vector originating froma3.

Sincea3 is triggered bya2 anda2 is triggered bya1, none of the actions will trigger. The

evolutionary process is not affected by the existence of circular referencing within the

network. Such an event would cause the representative individual to be rapidly eliminate

through the selection process due to the resultant low performance of the agent. Such

rapid elimination of the individual prevents the propagation of harmful configurations in

following generations.

Figure 4.11: Circular trigger vector dependency involving multiple actions.

We present an example based upon the evolution of a robotic arm controller to demon-

strate the evolution of trigger vectors. The configuration presented is shown in Fig-

ure 4.12. The robotic arm consist of a base, two arm components, and two hinge joints

each utilizing a single degree of freedom. The goal of the evolution process is to evolve

the arm behavior in order to move towards a target location without any predefined strat-

egy for motion.

The initial trigger network representation of the control problem consists of two sub-

networks each controlling the movements of one of the joints. The most optimum strategy

should bring the arm closest to the target within predefined time duration. The aim of the

genetic optimization process is to accomplish the following:

• To find the best angle values for the joint control commands.

• To find the most appropriate trigger vector magnitudes, which determine the move-

ment execution sequence.

Figure 4.13 shows the trigger network representation of therobotic arm problem. In

addition to evolving the parameters utilized within each action, the network layout itself

CHAPTER 4. GUIDED GENETIC EVOLUTION 80

Figure 4.12: Trigger vector evolution of a robotic arm controller.

Figure 4.13: Trigger network representation of the robotic arm problem.

is altered through the evolution of the trigger vector magnitudes. The priority values

for both subnets are set to 1.0 as the probability for the two actions contradicting each

other does not exist. Also, both elements of theoVECarray of the root node are set to

zero indicating that both behaviors are flagged for execution at simultaneous following the

triggering of the root node; however, the ultimate execution starting points are determined

by the magnitude and direction of the vectorv1.

CHAPTER 4. GUIDED GENETIC EVOLUTION 81

The execution sequencing of the two actions is determined bythe direction of the

trigger vector connecting the two components. The random magnitude initialization ofv1

results in an even distribution of configurations where a percentagep of individuals have

the noder1 triggerr2, while 1− p of individuals have the trigger relationship reversed. If

a large enough population is utilized, the valuep approaches 0.5 allowing the system to

evaluate both trigger scenarios equally.

Figure 4.14: Evolved trigger network for robotic arm problem.

The evolved trigger network is demonstrated in Figure 4.14.The process utilized a

fitness function that evaluates performance based on the final proximity of the robotic

arm to the target. The fitness valuefi for individual i was calculated using the following

formula:

fi = 100−d3

whered represents the final distance from the target. The arm evolution utilized 24 indi-

viduals over 100 generations. A crossoverα = 0.1 and a mutation probabilitypm=0.01

were utilized in the evolutionary process.

We notice that ultimately jointj1 starts the execution of the entire behavior by moving

towards the target. The magnitude of vectorv1 evolves to a value of 0.58; hence, the

motion of joint j2 is triggered afterj1 has completed 58% of its execution cycle. An

execution duration of 2 seconds was utilized for both actions, so joint j2 starts its motion

1.16 seconds following jointj1. The final evolved angle forj1 and j2 are 39◦ and 74◦

respectively. The final evolved position of the robotic arm is shown in Figure 4.15. The

CHAPTER 4. GUIDED GENETIC EVOLUTION 82

evolution progression is shown in Figure 4.16 where we notice a very rapid improvement

in overall fitness over the first ten generations, then a steady gradual increase in average

fitness is demonstrated by the system until the maximum generation number is reached.

Figure 4.15: Evolved robotic arm controller.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 4.16: Evolution progression of the robotic arm problem.

Although the most optimum arm angles for the presented problem could be numerical

calculated using inverse kinematics, the evolutionary methodologies utilized proves use-

ful in other problems where a numerical solution is not reachable, or could be reached,

yet not within a reasonable time frame.

CHAPTER 4. GUIDED GENETIC EVOLUTION 83

4.5.2 Evolution of Actions

Trigger network actions are evolved towards more optimum configurations in an effort

to achieve higher fitness. The type of evolution utilized depends on the specific type of

action being evolved. Direct joint control actions are evolved based on their associated

joint angle as well as the urgency of action execution. For any joint within the articulated

structure, each degree of freedom is considered an independent action with its own set of

parameters. Different angles and urgencies may be associated with different axis of the

same joint.

Joint control strategy evolution is based upon finding the most optimum control algo-

rithm based upon the functional dependency of control parameters. A functional relation-

ship is determined between a desired output signal and an input signal which represents

the state of the joint or one of its characteristic functions. Given the input valuex, the evo-

lutionary process aims to select the most successful control function f (x) selected from

the list presented in Table 4.1. The function selected determines how the input value maps

to an executable action that helps the agent achieve its desired goals. The global constant

parameterF is scaled by the evolvable scaling parameters in order to achieve the final

form of the function.

1. f (x) = s·F ·x
2. f (x) = s·F ·x2

3. f (x) = s·F ·x3

4. f (x) = s·F ·√x
5. f (x) = s·F · 3

√
x

Table 4.1: Functional dependency list for the evolution of joint control strategies.

The list of functions presented could be expanded to accommodate special types of

relationships between sensory inputs and associated actions. In addition, the functional

dependency could involve multiple input values combined toproduce a more complex

mapping strategy.

If a joint is being manipulated through a PID controller, then the evolutionary process

aims to optimize the PID gains in an effort to achieve the bestresults. The three gain

parameters are represented byKp for the proportional gain,Ki for the integral gain, and

Kd for the differential gain. Manipulating the PID parametersusing the genetic process

allows the system to rapidly reach the most optimum control strategy in relation to the

fitness function governing the evolution of individuals.

CHAPTER 4. GUIDED GENETIC EVOLUTION 84

Figure 4.17: Sphere position control using an evolved PID controller.

A problem demonstrating PID controller evolution is presented in Figure 4.17. The

presented articulated structure consists of a base and the three robotic arms:r1, r2, and

r3. The three arms are connected by three hinge joints:j1, j2, and j3. The platep is

connected to the top most arm,r3, utilizing the universal jointj4 which has two degrees

of freedom. The spheres is placed in the center ofp, and the goal of the articulated

system is to keep the sphere situated on the plate as it moves from its initial position to its

target position at the opposite side of the base. As the structure starts moving, the sphere

immediately starts to roll out of place and eventually dropsoff the plate. The system aims

to fulfill two main goals:

• To maintain the spheressituated on the plate by changing the plate angle relative to

its supporting arm. The rotation of the plate must counter the rolling of the sphere

by reducing its velocity and eventually moving it back to a stable position on the

plate.

• To minimize the average distance ofs from the center of the plate over all time steps

through out the execution of the entire behavior.

In order to achieve the behavioral goals, we utilize three different actions:

• Action a1 represents an evolved control strategy action responsiblefor keeping arm

r3 always in an upright position as the robotic structure movesthrough its different

positions. This task is accomplished by continuously monitoring the deviation of

the vertical arm axis from the global vertical axis and changing the angle ofj3 ac-

cordingly. Since a direct mapping exist between the deviation angle and the desired

CHAPTER 4. GUIDED GENETIC EVOLUTION 85

angle adjustment, the required change in the angle ofj3, δ, is equal to the negative

of deviation angleθ.

• Action a2 represents an evolved PID controller acting on jointj4 and is responsible

for keepings in close proximity to the surface center ofp. This is accomplished by

utilizing the distancex, which represents the distance between the center ofs and

the surface center ofp as the input to the PID controller. The three gain components

kp, ki , andkd are evolved in order to achieve the best results. The output of the PID

controller represents adjustment signals that apply change to the angle ofj4.

• Action a3 also represents an evolved PID controller acting on jointj4, yet a3 is

responsible for maintaining the velocity ofs as close to zero as possible. Although

the rate of change inx is taken into account asa2 calculates its output signals, a

separate PID controller with an aim to reduce the velocity gives the system a faster

response time helping maintains situated onp at all times.

The three control actions utilized represent continuous actions whose duration spans

the entire life span of the behavior. The three actions are triggered by the network root

node, then they proceeds to execute indefinitely making constant adjustments until the

behavior terminates. Figure 4.18 illustrates the independence of all three actions as no

trigger vectors are present among them, so each action executes locally without triggering

any other parts of the system.

Figure 4.18: Trigger network for the sphere position control problem.

The fitness function utilized is based on the aim to maintain the placement ofs on p

through out the entire span of motion. The function is also based on the total accumulated

distance of the sphere center at timet, sc(t), from the surface center of the plate at timet,

CHAPTER 4. GUIDED GENETIC EVOLUTION 86

pc(t), over all time steps. The fitness value for each individual isinversely proportional

to the total accumulated distancedtotal defined as:

dtotal =
tmax

∑
t=1

|pc(t)−sc(t)|

wheretmax represents the maximum time step count for the behavior execution. The

evolutionary process utilized 24 individuals over 100 generations. A crossoverα = 0.1

and a mutation probabilitypm=0.01 were utilized. The final values of the PID gain pa-

rameters for both PID actions are shown in Table 4.2.

PIDx PIDv

kp 3.97 3.71
ki 1.41 3.60
kd -4.11 -2.38

Table 4.2: Final evolved PID gain parameters.

The evolved PID controllers manage to maintains situated onp for the complete

movement cycle. In addition, the control strategy helps maintain the sphere as close to

the center of the plate as possible to reduce the risk of falling off. The average distance of

s from the surface center ofp over all time steps is 0.26 units, compared to a maximum

possible distance of 1.25 units which represent half the width of the plate. The evolu-

tion progression of the presented problem over 50 generations of evolution is shown in

Figure 4.19.

4.6 Guiding the Genetic Process

The guided genetic evolution approach allows the designer to decrease the size of the

problem search space by specifying boundaries that govern the evolution of actions and

trigger vectors. The guiding mechanisms provides the evolutionary system with a general

loose strategy for behavior execution. This is accomplished by supplying the system with

bounding criteria for the evolution of the representative trigger network. Genetic guidance

may be supplied by specifying any of the following criteria:

• General trigger network layout

• Action nodes within each subnetwork

• Ranges for joint angles

CHAPTER 4. GUIDED GENETIC EVOLUTION 87

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 4.19: Evolution progression of the robotic arm sphere balancingproblem.

• Ranges for execution urgency

• Ranges for PID gain parameters

• Ranges for execution priorities

• Trigger vector connectivity for actions

• Trigger vector connectivity for subnetworks

• Trigger vector sign (direction)

• Ranges for trigger vector magnitudes

The following sections describe the guidance methods in more detail. Some comparative

studies are also provided to compare solution convergence time and accuracy between

guided and unguided trigger networks.

4.6.1 Trigger Network Layout

An unguided trigger network must utilize a large enough layout to accommodate pos-

sible structural changes and required subnetwork count. Ifguidance is not utilized, the

network layout must contain a large enough number of initialsubnetworks to eventually

CHAPTER 4. GUIDED GENETIC EVOLUTION 88

represent the different behaviors to be executed by the agent. All subnetworks are ini-

tially connected by trigger vectors representing possiblerelationships between behavior

executions. Several significant issues are present in the initialization of unguided trigger

networks:

• The designer has to make an estimate of the maximum possible number of behav-

iors required for the agent to achieve its goals. This may notbe accomplished

without a thorough analysis of the possible execution scenarios for agent behav-

iors. Once such analysis has been performed, the insight attained may be utilized

in a more productive manner than the simple determination ofmaximum possible

behavior count and network hierarchy levels.

• Several layers may be present in the network hierarchy. Utilizing a large number

of behaviors at each level may cause the size of the unguided network to grow

exponentially drastically reducing the possibility for accurate convergence of the

network and significantly increasing the evolution duration.

• A complex articulated structure would contain a large number of joints with possi-

bly multiple degrees of freedom for each joint. Including all possible actions4 in

each subnetwork would create an exponentially large variable count to be optimized

for each behavior within the network.

Guiding the trigger network into faster and more accurate convergence requires the

inclusions of constraints that limit the problem search space by minimizing the trigger

network size. Such constraints would relate to subnetwork structuring and dependency,

action inclusion, parameter ranges, and trigger vector directions and magnitudes.

4.6.2 Subnetwork Structuring

Subnetworks represent primitive behaviors that are used asbuilding blocks within the

trigger network. In order to limit the network size, guidance is provided by loosely defin-

ing the basic behavioral structure essential for the achievement of the goals. In order to

achieve the most optimum control strategy, the following structuring steps are utilized:

• The execution path that connects the beginning of the agent’s life cycle with its

associated goal achievement point is divided into multiplesegments where the end

point of each segment represents a desired known state.

4An action is defined as a control strategy relating to a particular axis of a particular joint. A joint with
multiple degrees of freedom would be represented by multiple actions

CHAPTER 4. GUIDED GENETIC EVOLUTION 89

• Each of the path segments is represented by a subnetwork transporting the agent

from one known state to the next.

• Each subnetwork is structured loosely by specifying the possible actions that would

contribute to the successful achievement of the desired state.

• Subnetworks are connected via trigger vectors representing the relationships that

govern the triggering of primitive behaviors.

Once the core subnetwork structure is in place, the evolutionary process optimizes

the control strategy by altering the internal subnetwork components as well as the vector

connectivity between subnetworks.

If we examine an example of a four-legged robotic agent with the goal of achieving

forward mobility, we notice some essential segmentations that exist on the path to the

successful achievement of the goal. The segments representintermediate goals the agent

must achieve in order to reach successful forward stepping actions. Figure 4.20 shows the

four-legged robot in the simulation environment.

Figure 4.20: Four-legged robot placed in the simulation environment.

In order to simplify the control problem, we structure the four-legged robot problem

utilizing only 4 active joints. The four joints are used to connect the 4 legs to the main

torso, while the 4 feet are connected to the legs using passive joints that lock the feet

at a specific angle. Each of the active joints utilize two degrees of freedom in order to

be able to move the leg upward and downward as well as forward and backward. Each

movement along an axis of a joint is considered a separate action that is independently

evolvable. Hence, we utilize a total of eight actions for controlling the robot. Table 4.6

lists the action classifications for the four-legged articulated structure.

CHAPTER 4. GUIDED GENETIC EVOLUTION 90

ID Joint Axis Description
a1 j1 1 Up/down motion for front right joint
a2 j2 1 Up/down motion for front left joint
a3 j3 1 Up/down motion for rear right joint
a4 j4 1 Up/down motion for rear left joint
a5 j1 2 Front/back motion for front right joint
a6 j2 2 Front/back motion for front left joint
a7 j3 2 Front/back motion for rear right joint
a8 j4 2 Front/back motion for rear left joint

Table 4.3: Action classification for the four-legged robot problem.

Figure 4.21: Action classifications for the four legged articulated structure.

Figure 4.21 shows the location for each of the joints being utilized as well as the

associated action tied to each of the joint axis. In order to achieve successful forward

mobility, the joints must be controlled using an appropriate strategy. If we do not uti-

lize any guidance in the robot motion planning, then we must estimate the approximate

number of intermediate behaviors the robot must step through in order to achieve its pri-

mary goal. For each of the behaviors decided upon, we must include all eight actions

as possible contributors to the behavior. In addition, we must include trigger vectors be-

tween each action and the other seven actions within each behavior to represent possible

execution dependencies. Similarly, each behavior, represented by a subnetwork, must be

connected to all other behaviors to represent possible dependencies among the behav-

iors themselves. Considering the unguided behaviorb1 and its eight associated actions

a1,...,a8, Figure 4.22 shows the structuring of theb1 subnetwork.

CHAPTER 4. GUIDED GENETIC EVOLUTION 91

Figure 4.22: Single behavior in unguided trigger network including allassociated actions
and action dependencies.

For each of the behaviors included in the trigger network, evolvable parameters must

be utilized for each of the utilized actions and trigger vectors. For a single behavior

with eight direct control actions, we require a single parameter for the desired angle, and

another parameter for the associated urgency. Hence, we require a total of 16 action

variables for the subnetwork. In addition, since each action node is connected to each

other node as well as the representative relay node via a trigger vector, we have a com-

pletely connected mesh network of 9 nodes. For a network ofn nodes, the number of

required connections isn(n−1)/2, hence, we require 36 trigger vectors within the net-

work. Two variable are required to hold the state of for each trigger vector: one variable

is utilized to represent the connection direction and magnitude of the vector, and another

is used to hold the activation state. In addition to the internal sub network connections,

additional connections are required to represent dependency relationships between sub-

networks. Figure 4.23 shows the interconnections between subnetworks utilized in the

four-legged robot control problem.

Table 4.4 details the different variable counts for the genetic optimization problem.

We notice that without the use of genetic guidance, the number of variables to be opti-

mized in order to achieve the desired goal is very large. In order to achieve successful

evolution of a robotic controller for the presented problem, a significantly large popu-

lation size must be utilized over a large number of generations. The complexity of the

structure being evolved exponentially increases the chances for achieving convergence to

CHAPTER 4. GUIDED GENETIC EVOLUTION 92

Figure 4.23: Subnetwork connectivity among four behaviors in the unguided configura-
tion of the trigger network.

an suboptimum control strategy.

Actions/Subnet 8
Variables/Action 2
Vectors/Subnet 36
Variables/Vector 2
Total Variables/Subnet 88
Subnets 4
Subnet Connections 6
Total Network Variables 358

Table 4.4: Variable counts for the unguided four-legged robot problem.

Structural guidance may be utilized in the presented problem to minimize the number

of variables being optimized. This is achieved by applying several strategies:

• Approximating the core behaviors necessary for achieving the goal.

• Choosing contributing actions for each behavior and using only those actions in the

structuring of the subnetwork.

• Minimizing the number of vector connections within each subnetwork by utilizing

only vector connections that have a high probability of being utilized.

• Minimizing the number of vector connections among behaviors depending on the

possible dependencies that govern the achievement of intermediate goals.

CHAPTER 4. GUIDED GENETIC EVOLUTION 93

In order to provide layout guidance for the trigger network,we formulate a possible

configuration that would yield successful forward mobility. We base the trigger network

on two subnetworks each representing a single behavior thatutilizes all of the four joints.

Since each joint moves on two axis, each subnetwork contains8 action nodes all to be

triggered simultaneously. The aim is to have the evolutionary process locate an appro-

priate configuration that propels the robot forward. The most intuitive mobility scenario

is achieved if the genetic process reaches the general sequence of behaviors listed in the

following table:

Behavior 1 Jointsj1 and j4 manage to move their associated legs up and forward, while
joints j2 and j3 manage to move their associated legs down and back.

Behavior 2 Jointsj2 and j3 manage to move their associated legs up and forward, while
joints j1 and j4 manage to move their associated legs down and back.

The reverse of the given strategy, where the action couples are swapped, should also

yield the same results. Although the given structure is the most intuitive configuration for

four-legged mobility, the genetic process probabilistically may find other configurations

that also work as well. Table 4.5 shows the variable counts after the application of network

modifications.

Actions/Subnet 8
Vectors/Subnet 8
Total Variables/Subnet 32
Subnets 2
Subnet Connections 2
Total Network Variables 36

Table 4.5: Variable counts for modified trigger network.

For the specific given problem, the following modifications have been implemented

to reduce the complexity of the trigger network:

• Number of subnetworks was reduced to only two subnets representing two core

behaviors,

• All trigger vector connections between actions were removed in both subnetworks,

• All trigger vector magnitudes in the network were fixed,

CHAPTER 4. GUIDED GENETIC EVOLUTION 94

• Only a single trigger vector connects the first subnetwork tothe second using a

single prominent action of the first subnetwork,

• Only a single trigger vector connects the second subnetworkto the reset node using

a single prominent action of the second subnetwork.

Figure 4.24 shows the structure of the guided trigger network. The network consists

of the two subnetworksb1 andb2.

Figure 4.24: Guided trigger network for the evolution of the four-legged robot.

The relay nodeb1 is triggered directly by the root of the network making it thefirst
node to be executed. The nodeb1 in turn triggers its associated eight actions represented
by the unique IDsa11...a18. The actions directly correspond to the action classifications
listed in Table 4.6.

Actions of the subnetworkb1 are executed immediately following the execution of their
associated relay node since all trigger vectors connectingthe relay node to the associated
actions are fixed to a value of zero.

CHAPTER 4. GUIDED GENETIC EVOLUTION 95

Action a11 is selected as the prominent action ofb1. The subnetworkb2 is triggered
by a1 with a trigger vector magnitude of 1, which means thatb2 is triggered immediately
following the termination ofa1.

The execution ofb2 prompts the immediate execution of actionsa21...a28, which also
directly correspond to the action classifications listed inTable 4.6. The actions are
triggered immediately as the internal trigger vectors ofb2 are also fixed to a value of
zero.

Action a21 is selected as the prominent action ofb2. Oncea21 terminates its execution,
it triggers a reset node which resets the state of the entire network then triggersb1 to
restart the execution cycle.

The evolution of the four-legged robot utilizes 50 individuals being evolved over 100

generations. The genetic process utilizes a roulette wheelselection method, crossover

probabilitypc = 0.01, crossover alphaα = 0.1, and mutation probabilitypm = 0.01. The

evolution progression is shown in Figure 4.25.

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 4.25: Evolution progression of the four-legged robot over 100 generations.

The associated fitness function utilized is structured to promote forward mobility in a

straight line without rotation. In order to evaluate the performance of each individual, the

following strategy was followed:

CHAPTER 4. GUIDED GENETIC EVOLUTION 96

• A reward is assigned based on the distance traveled by the robot within a 10 sec-

ond period. The reward assigned is proportionate to the distance traversed along a

straight line originating at the origin.

• A penalty is applied based on the deviation of the robot from the desired straight

path. The penalty assigned is proportionate to the perpendicular distance between

the final robot position and the desired path.

• A penalty is applied based on the rotation of the robot. The penalty assigned is

proportionate to the rotation angle about the z-axis after the 10-second run.

The specific fitness functionfi which represents the fitness of individuali is defined as:

fi = (xi ·1000)− (yi ·1000)− (θi ·2000) (4.8)

wherexi is the distance travelled along the target path,yi is the final perpendicular

distance between the robot position and the target path, andθi is the rotation along the

z-axis that has occurred since the triggering of the network.

As predicted, the four-legged robot does not conform to the most intuitive method for

forward mobility. The robot follows a systematic hopping motion that ultimately allows

it to achieve forward mobility (Figure 4.26). Although verylimited guidance has been

applied to the network structuring, the genetic process wasable to evolve a method for

forward mobility based on the criteria specified in the fitness function.

Figure 4.26: Four-legged robot forward mobility utilizing a hopping behavior.

4.6.3 Guidance of Actions

In addition to guiding the trigger network layout, the network actions could also be guided

towards specific configurations that would allow faster and more accurate convergence.

CHAPTER 4. GUIDED GENETIC EVOLUTION 97

Guidance of actions aim to reduce the problem search space byreducing the size of the

search interval for each of the action parameters. Any of theaction types utilized may be

guided by providing a level of parameter range focusing. Thethree action types may be

guided as follows:

• Direct controlactions may be guided by reducing the search interval for both the

angle and urgency parameters. Without guidance, the actionwould utilize the joint

low and high stop points as the boundaries for its search. However, by specifying

an alternate range that is of a smaller size than the full range of motion for the

joint, better results may be achieved. The urgency parameter may also be focused

by utilizing insight into the nature of the problem and usingan urgency range that

would be most appropriate for achieving the desired results.

• Control strategyaction evolution aims to find a functional dependency between an

input value and a desired output signal. By utilizing only a subset of the available

functions, we may cut down the evolution time. For example, if knowledge of the

problem leads to a determination that the output signal mustexceed the input value,

then only functions that result in an output that exceeds theinput value may be

used.

• PID control actions evolve their control parameters in order to achievethe most

optimum control strategy based on an input value. The parameterskp, ki , andkd

could be represented by any value, and reducing the possibleinterval for each of

the parameters may drastically increase the probability ofoptimum convergence.

For the four-legged robot problem, we utilize further guidance of direct control pa-

rameters in an effort to achieve quicker and better results.The following action guidance

strategy was followed:

In the first behavior identified byb1, the intervals for possible leg angles where reduced
in size so that the legs connected to jointsj1 and j4 were limited to moving upward and
forward throughout the behavior. Similarly, the legs connected to jointsj2 and j3 were
limited to moving downward and backward during the behavior.

In the second behavior identified byb2, the legs connected to jointsj1 and j4 were
limited to moving downward and backward, while the legs connected to jointsj2 and j3
were limited to moving upward and forward.

CHAPTER 4. GUIDED GENETIC EVOLUTION 98

The urgency of action execution was limited so that the up/down movements of the legs
executes in half the time (on average) as the forward/backward movement. This strategy
allows for the forward stepping to be achieve by having the legs touch the ground and
then continue to pull backwards propelling the robot forward.

The same genetic parameters were utilized for the evolutionof the agent after the guid-

ance modifications have been made. Also, the same fitness function were used to measure

the results. The evolution progression of the guided robot is shown in Figure 4.27. If we

compare the evolution results to that of the unguided evolution, we notice the same pro-

gressive improvement in average fitness over the entire evolutionary process. However,

we notice that the final average fitness achieved after 100 generations of evolution has

almost doubled due to the evolutionary guidance introducedto the actions executed by

the agent. The final average fitness of the entire population increased from 1812 to 3600

due to the network modifications implemented, which represents a 98% increase.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 4.27: Guided evolution progression of the four-legged robot over 100 generations.

4.6.4 Guidance of Trigger Vectors

Trigger vectors are utilized as means for determining the sequencing of event execution

within the trigger network. An unguided trigger network would include trigger vectors

connecting all network nodes representing possible execution relationships. Guidance

CHAPTER 4. GUIDED GENETIC EVOLUTION 99

of trigger vector allocation is achieved by utilizing knowledge of the problem as well

as possible solution scenarios to limit the trigger vector allocation by applying specific

vector configurations.

In the four-legged robot problem, knowledge of the problem allows us to determine

that a possible mobility scenario would consist of a two-phase approach where the first

phase triggers the second. Each phase consists of multiple actions triggered simultane-

ously by the subnetwork relay node without any trigger vectors connecting the actions to

each other. By guiding the trigger vector allocation in thatmanner, we have significantly

reduced the complexity of the problem by reducing the vectorcount within each subnet-

work. However, further problem guidance could be achieved by the further partitioning

of the problem into smaller core behaviors supported by trigger relationships.

We expand the problem guidance to encapsulate 16 different actions. Each leg is to

have the following four independent actions associated with it:

• Upward movement

• Downward movement

• Forward movement

• Backward movement

The following expanded action classifications are to be used:

The desired sequencing to be achieved is as follows:

1. Legs 1 and 4 move upwards and forwards while legs 2 and 3 movebackwards,

2. Legs 1 and 4 both lower their legs to make contact with the walking surface,

3. Legs 2 and 3 move upwards and forwards while legs 1 and 4 movebackwards,

4. Legs 2 and 3 both lower their legs to make contact with the walking surface,

5. Repeat cycle.

Four behaviors are needed for achieving the action combinations described above. The

first behavior identified byb1 consists of the six described actions. Figure 4.28 shows the

structure of theb1 subnetwork. The six actions contained inb1 are all executed simul-

taneously at the time the subnetwork is executed. Each of theactions inb1 is given the

CHAPTER 4. GUIDED GENETIC EVOLUTION 100

ID Joint Axis Description
a1 j1 1 Up motion for front right joint
a2 j1 1 Down motion for front right joint
a3 j1 2 Front motion for front right joint
a4 j1 2 Back motion for front right joint
a5 j2 1 Up motion for front left joint
a6 j2 1 Down motion for front left joint
a7 j2 2 Front motion for front left joint
a8 j2 2 Back motion for front left joint
a9 j3 1 Up motion for rear right joint
a10 j3 1 Down motion for rear right joint
a11 j3 2 Front motion for rear right joint
a12 j3 2 Back motion for rear right joint
a13 j4 1 Up motion for rear left joint
a14 j4 1 Down motion for rear left joint
a15 j4 2 Front motion for rear left joint
a16 j4 2 Back motion for rear left joint

Table 4.6: Expanded action classification for the four-legged robot problem.

Figure 4.28: Subnetworkb1 representing first agent behavior.

same minimum execution urgency of 0.5 and a maximum execution urgency of 2.0. The

genetic process is to determine the best urgency value for each of the joint movements.

The second agent behavior identified byb2 consists of two actions that lower legs 1

and 4 to make contact with the ground in preparation for propelling the robot forward.

Both actions are also connected to their associated relay node via zero-magnitude trigger

vectors, and they are given the same urgency bounds as the actions of the first behavior

with a minimum of 0.5 and a maximum of 2.0. Behaviorb2 is represented by Figure 4.29

The third behavior is quite similar to the first except for thefact that it reversed the

roles of the two leg groups. Legs 2 and 3 are to move upwards andforwards while legs 1

CHAPTER 4. GUIDED GENETIC EVOLUTION 101

Figure 4.29: Subnetworkb2 representing the second agent behavior.

and 4 are to move backwards. The backward action of legs 1 and 4should be responsible

for propelling the robot forward allowing it to achieve a stepping behavior. The same

trigger vector configuration is utilized for this behavior as for the previous two. Behavior

b3 is represented by Figure 4.30

Figure 4.30: Subnetworkb3 representing the third agent behavior.

The fourth and final behavior is similar to behaviorb2 except for the fact that it lowers

legs 2 and 3 to the walking surface instead of legs 1 and 4. Zero-magnitude trigger vectors

are also utilized to trigger the actions within the subnetwork.

Figure 4.31: Subnetworkb4 representing the fourth agent behavior.

The sequencing of behavior execution is structured based onimmediate transitions

from one behavior to the next. A dominant action is chosen in each subnetwork for the

purposes of triggering the next behavior once its own execution has terminated. The

following dominant actions were chosen for each of the behaviors:

CHAPTER 4. GUIDED GENETIC EVOLUTION 102

• Action a3 in b1 triggersb2.

• Action a14 in b2 triggersb3.

• Action a7 in b3 triggersb4.

• Action a6 in b4 triggers the reset node.

The complete trigger network for the expanded problem is shown in Figure 4.32. The

network root triggers subnetworkb1 starting the execution of the first behavior. Each

subnetwork triggers the next until subnetworkb4 triggers a reset node which resets all

nodes to their original state and starts the network execution once more. The evolutionary

process utilized the same genetic parameters as in the previous iterations of the prob-

lem. A roulette wheel selection method was utilized. A crossover probabilitypc = 0.01,

crossover alphaα = 0.1, and mutation probabilitypm = 0.01 were utilized in the ge-

netic process. The evolution progression over 100 generations is shown in Figure 4.33.

We notice that due to the added network guidance, the averagefitness exceeds that of

the previous network layout within the first 10 generations of evolution. The progress

continues throughout the evolutionary process reaching a final average fitness of approxi-

mately 4800, which represents a further 33% increase in average fitness over the previous

network layout.

4.7 Detailed Algorithm

In this section, we detail the algorithm utilized for the evolution of trigger networks for

articulated robot control. Once the network has been structured based on knowledge of

the problem as well as the systematic guidance utilized to reduce the problem complexity,

the genetic evolution algorithm is used to evolve the most optimum control strategy in

relation to the desired goals. The algorithm presented covers the evolution of all aspects

of the trigger network, including action nodes, trigger vector directions, magnitudes and

activations, as well as the general subnetwork connectivity.

The evolution algorithm utilized is structured as follows:

Evolution Algorithm

begin(1)

t := 0

initialize Gt based on network guidance

CHAPTER 4. GUIDED GENETIC EVOLUTION 103

Figure 4.32: Trigger network for expanded four-legged robot problem showing the four
subnetworks representing the four core agent behaviors.

evaluate fitness of individuals in Gt

While Not termination-conditiondo

begin(2)

t = t +1

select Gt from Gt−1:

CHAPTER 4. GUIDED GENETIC EVOLUTION 104

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 4.33: Evolution progression of the four-legged robot over 100 generations.

P(c j) =
ϕ(f (c j))

m
∑

k=1
ϕ(f (ck))

whereP(c j) is the probability for selecting individualc j , f (c j) is the fitness

value for individualc j , f (c j) is the fitness value for individualc j , m is the

number of individuals in the generation, andϕ : R → R
+ is a non-decreasing

transformation used to shift the fitness values toR
+.

crossover Gt with probability pc:

[

min(x1
i ,x

2
i)− I ·

(

αmax−
g · (αmax−αmin)

gmax

)

,max(x1
i ,x

2
i)+ I ·

(

αmax−
g · (αmax−αmin)

gmax

)]

wherepc is the crossover probability,gmax is the maximum generation

number,g is the current generation number,αmin andαmax are the minimum

and maximumα values desired respectively,x1
i represents genei for the first

parent individual,x2
i represents genei for the second parent individual, and

I = max(x1
i ,x

2
i)−min(x1

i ,x
2
i)

CHAPTER 4. GUIDED GENETIC EVOLUTION 105

mutate Gt with probability pm:

Randomly choose:

ci = xi +∆(t,bi −xi)
or

ci = xi −∆(t,xi −ai)

where

∆t(t,x) = x·
(

1− r

(

1− g
gmax

)b
)

The random valuer is chosen from the interval[mmin,mmax], pm is the

mutation probability, andmmin andmmax define the bounds of the target

domain for the specific gene.

evaluate fitness of individuals in Gt

end(2)

end(1)

The initialization, crossover and mutation algorithms presented above are used for all

action nodes as well as trigger vectors within the network. In the case of action nodes,

the algorithm is applied depending on the node subtype as each subtype holds a different

type of structure to be evolved. Action nodes are evolved as follows:

• Direct Control

– The joint angle for each active axis is initialized using a random value gener-

ated from the interval[Anglemin,Anglemax].

– The execution urgency for each active joint axis is initialized using a random

value generated from the interval[Urgencymin,Urgencymax].

– Crossover is applied to both the angle and urgency values of two individuals

using the algorithm presented.

– Mutation is applied to both the angle and urgency values of a single individual

using the algorithm presented.

• Control Strategy

CHAPTER 4. GUIDED GENETIC EVOLUTION 106

– The control function ID is randomly chosen from the interval[fmin, fmax]. Dis-

cretization is used to map the floating point value generatedby the genetic

process to an integer function ID.

– The control scaling values is initialized using a random value generated from

the interval[smin,smax].

– Crossover is applied to both the function ID and scaling value of two individ-

uals using the algorithm presented.

– Mutation is applied to both the function ID and scaling valueof a single indi-

vidual using the algorithm presented.

• PID Control

– The PID parameterkp is randomly chosen from the interval[kpmin,kpmax].

– The PID parameterki is randomly chosen from the interval[kimin,kimax].

– The PID parameterkd is randomly chosen from the interval[kdmin,kdmax].

– Crossover is applied to the valueskp, ki andkp of two individuals using the

algorithm presented.

– Mutation is applied to the valueskp, ki andkpof a single individual using the

algorithm presented.

The application of initialization, crossover and mutationoperators to trigger vector

parameters is quite similar to their application to action nodes. The following strategy is

followed for trigger vectors:

• The trigger vector value is randomly chosen from the interval [vmin,vmax], where

vmin and vmax represent the minimum and maximum dependency values respec-

tively. The sign of the vector value represents the direction of the vector, while the

magnitude represents the execution dependency beteween the two nodes involved.

Guidance is achieved by taking the desired direction and magnitude into account

when choosing the interval bounds for the specific vector.

• The trigger vector activation value is chosen randomly to indicate if the vector will

in fact trigger the execution of other vectors within the network or not. The activa-

tion value is chosen randomly from the interval[0,1]. A value below 0.5 indicates

that the vector is inactive, while a value greater than or equal to 0.5 indicates that it

is active.

CHAPTER 4. GUIDED GENETIC EVOLUTION 107

• Crossover is applied to the trigger vector value and activation of two individuals

using the algorithm presented.

• Mutation is applied to the trigger vector value and activation of a single individual

using the algorithm presented.

The guidance utilized with trigger networks represent a loose strategy for pointing the

evolutionary process towards a certain desired configuration. However, the guidance is

not meant to enforce rigid constraints that constrict the evolutionary process taking away

the essence and benefits of the genetic methodologies. Several approaches may be used

to allow the network to evolve to an area outside of the suggested guidance criteria:

• The crossover operation utilizes values from both parents to generate offspring.

The crossoverα value is used to expand the target range beyond the boundaries

represented by the values extracted from the parents. The larger theα value, the

more of an opportunity the process has to move outside of the guidance interval by

gradually reaching one of the boundaries then crossing it reaching a different area

of the search space.

• The mutation operation generates offspring by generating random values from a

predetermined interval for each target gene. Guidance is provided through the se-

lection of desired intervals from which to select the genes for the first generation of

individuals. Future generations, however, may utilize a larger interval encompass-

ing all feasible values for the gene as the basis for selecting the random values. This

would allow the process to select gene values that contradict the initial guidance

given to the system. If any of the selected values prove to produce higher fitness

values, then those values will be chosen for reproduction, and they may eventually

have prominent presence in the population.

4.8 Conclusion

The guided genetic evolution platform utilizes trigger networks as a representational ve-

hicle for the robotic control problem. The framework achieves optimization of the control

strategy allowing for the successful goal-based control ofautonomous robotic agents in

real-time. Trigger networks represent a connectionist model structured for the encapsu-

lation of the articulated robotic control problem. The network structure allows for the

modeling of robotic actions and behaviors as well as the relationships the govern the

CHAPTER 4. GUIDED GENETIC EVOLUTION 108

achievement of control goals. The evolution of trigger networks utilizing customized ge-

netic methodologies allows the system to achieve optimizedcontrol strategies by follow-

ing a systematic learning policy geared towards the continuous and gradual enhancement

of system performance.

The guided genetic evolution platform presents constructsfor the guidance of the

control problem genetic representation and evolution drastically reducing the complexity

of the problem. The genetic guidance reduces the variable complexity associated with

the optimization problem which allows for faster system convergence and reduces the

chances for convergence to suboptimal results. The guidance mechanism also allows for

the inclusion oflearning by examplemethodologies without taking away from the essence

of the genetic process.

Genetic guidance is achieved through the manipulation of genetic initialization to fa-

vor specific configurations relating to agent actions as wellas governing relationships

represented by trigger vectors. Trigger network evolutionapplies genetic selection grad-

ually increasing the population average fitness over multiple generations. The genetic

crossoverα choice as well as the mutation interval maintains the network ability to devi-

ate from the guidance strategy when proven to be beneficial for the evolutionary process.

The following chapters discuss the utilization of guided genetic evolution in several

specific scenarios for the control of articulated robotic structures. For each of the prob-

lems presented, the guidance strategy as well as the resultsare discussed.

Chapter 5

TESTING THE EVOLUTION PLATFORM

5.1 Introduction

This chapter offers an implementation strategy to be followed in order to structure a con-

trol problem as an evolvable guided trigger network. The chapter also presents several

control scenarios for articulated robotic control using guided genetic evolution. For each

of the scenarios presented, the structuring of the control problem is discussed in detail

as well as the trigger network problem representation and guidance. The implementa-

tions given aim to convey different perspectives of the control problem along with design

methodologies for achieving successful control.

5.2 Implementation

This section describes a systematic implementation approach for structuring the control

problem in order to utilize guided genetic evolution methods. The following steps list the

implementation process:

1. The robotic agent is encoded as a trigger network which represents all the actions to

be controlled by the evolved controller. Each of the a robot’s joint axis is associated

with a direct control action. The minimum and maximum anglesfor each of the

actions are determined by the low and high stop points of the axis. Each possible

force application within the system is also associated witha control strategy action

or PID control action depending on the nature of the problem.

2. The subnetwork count representing the number of possibleagent behaviors is cho-

sen based on the total number of joint axis to be controlled. Each behavior maybe

executed multiple times utilizing different parameters, so the subnetwork count may

require expansion depending on the estimated repeat count of each behavior.

3. The trigger network is structured based on the number of actions and sub networks.

Each subnetwork is structured with all possible actions as internal nodes, and trigger

vectors are utilized to connect each action to each other action in both directions.

The same trigger vector connectivity is utilized for subnetwork connectivity.

109

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 110

4. Guidance is applied to the network utilizing the following strategy:

• The number of sub networks to be utilized is reduced using insight into the

specific problem to be solved as well the possible sequencingscenarios in-

volved.

• The number of actions within each subnetwork is reduced depending on the

positioning of the subnetwork in the behavior execution sequence and the ac-

tions that could possibly allow for achieving the desired behavior goals.

The following sections discuss the implementation detailsof several control problems

and their associated control strategies developed utilizing guided genetic evolution. For

each of the problems presented, the implementation processdiscussed is used to encode

the robotic agent as a trigger network, then guided evolution is applied to reach a trained

controller capable of achieving the desired goals.

5.3 Inverted Pendulum

The Inverted Pendulumproblem is used extensively as a benchmark for testing various

types of control strategies. The problem has been presentedpreviously, and we present

the general setup of the inverted pendulum problem in Figure5.1 for convenience. In

this section, we encode the associated control problem as anevolvable trigger network

in order to achieve the most optimum control strategy. The final results are evaluated

according to the level at which the desired output is achieved.

Figure 5.1: The inverted pendulum environment.

Four different input parameters are used to describe the state of the pendulum system

at any given point in timet. Instead of partitioning each parameter space into several

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 111

partitions, we use the direct value of the parameter as inputto the system and build our

control strategy based on the entire parameter space in order to achieve the most optimum

results.

The following four parameters are available to the controller at each time stept:

• xt : The horizontal distance of the cart along the x-axis measured from the cart initial

starting position. The value is given in meters and is constrained to a maximum

value ofxmax. The control strategy has to detect when the cart is located in close

proximity to the distance boundary and apply corrective measures to move the cart

closer to the point of origin.

• vt : The horizontal velocity of the cart along the x-axis. The value is given in meters

per second. The magnitude ofvt should stay close to zero as long as the pole is

balanced. As forces are applied to the pole in an effort to balance the pole,|vt | will

temporarily increase for a duration of time then decrease back to being close to zero

minimizing the rotational motion of the pole when it is in a balanced state.

• θt : The pole’s clockwise angle measure to the z-axis. The maximum angle allowed

is defined asθmax. The pole balancing is considered successful as long as the abso-

lute value of the angleθ is less thanθmax.

• ωt : The angular velocity of the pole measured in degrees per second. Pole balancing

is achieved by trying to minimize the effect of the forces on the pole at any given

time. Minimizing and maintainingωt close to zero guarantees keeping the pole in

a balanced position.

5.3.1 Action Specifications

The first step in encoding the control problem as a trigger network requires the determi-

nation of all relevant actions to be performed by the agent and applied by the evolved

controller. In this particular scenario, the specifications of the problem dictate a single ac-

tion to be performed as a means for controlling the robotic structure. The problem states

that the pole is to be balanced only via the application of forces to the cart in a manner that

counters the instability of the pole. Hence, a single control mechanism is utilized within

the trigger network, yet several partitions of the control strategy are utilized contributing

to the calculation to the most optimum force application.

The net force vectorv applied to the cart is defined as

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 112

v = (x,0,0)

where x is the magnitude of the force to be applied to correct the pole position.

Although a single force application is used for controllingthe robotic system, the

calculation of the force magnitude and direction stems fromthe execution of the following

actions:

• Action a1 represents theθ constraint component of the control strategy. As the angle

θ approachesθmax, forces are applied to the cart in the direction of pole movement

to increase the pole’s angular velocity in the opposite direction. The closerθ is to

zero, the lower the level of force application in order to reduce the possibility of

pushing the pole into a violent movement.

Action a1 is configured as acontrol strategyaction which is to be evolved in an aim

to find the most optimal functional relationship between thepole angleθ and the

force to be applied to the cart. The action aims to maintain the constraint

|θ|< θmax (5.1)

through the utilization of the most optimal functional relationship genetically cho-

sen from Table 4.1.

• Action a2 represents thex constraint component of the control strategy. The action

aims to prevent the cart from moving beyondxmaxdistance from the point of origin,

so as the distancex approachesxmax, forces are applied to the cart in order to

move it back towards the point of origin. Actiona2 is also configured as acontrol

strategyaction which is to be evolved in an aim to find the most optimal functional

relationship between the distance of the cart relative toxmax and the force to be

applied to the cart. The action aims to maintain the constraint

|x| < xmax (5.2)

through the utilization of the most optimal functional relationship genetically cho-

sen from Table 4.1.

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 113

5.3.2 Initial Network Layout

The initial trigger network layout consists only of the two actions listed, and both actions

are connected to each other via dual-directional trigger vectors. The layout is shown in

Figure 5.2.

Figure 5.2: Layout for the inverted pendulum trigger network.

Both actionsa1 anda2 are control strategy actions, which means that they execute

for the entire life-cycle of the agent attempting to continuously achieve a particular goal.

Hence, the trigger vectors connecting the two actions are not quite relevant as both actions

should start their execution cycle as soon as the controlleris triggered.

5.3.3 Network Guidance

As long as the mentioned system goals are being maintained, the system is considered

to be in a successful balancing state. Network guidance is achieved by using insight into

the nature of the problem as well as the actions to be executedby the agent to enhance

the network layout and reduce its complexity. The guidance procedure aims to make

adjustments to action parameters and inclusion, trigger vector parameters and activation,

as well as subnetwork connectivity when sub networks are utilized within the network.

Control strategy actions require the specification of a global force application param-

eter to be utilized in the evolutionary process. The value of20 is specified as the global

force application parameter for both actions within the network. In addition to the evolu-

tion of the functional relationships related to actions, a scaling parameter is also evolved

for each action in order to scale the constant force value to the most optimum force mag-

nitude to be utilized by the action.

Since the network actions are continuous actions that perform continuous adjustments

to the system, we guide the actions to commence execution at the moment the entire

network is triggered. Hence, we set the magnitudes of the trigger vectors connecting the

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 114

network root to the action nodes to zero. In addition, all trigger vectors connecting action

nodes to each other are removed. All actions are to be triggered by the root, and none of

the actions trigger other actions; hence, no dependency exists among action nodes, and

the presence of the trigger vectors is not needed. Figure 5.3shows the layout of the guided

trigger network for the inverted pendulum problem.

Figure 5.3: Guided trigger network for the inverted pendulum problem.

5.3.4 Fitness Function

The ultimate goal to be achieved by the system is to maintain balance of the pole on a

continuous basis. The fitness function aims to measure the performance of each indi-

vidual within the population by evaluating their results inrelation to the goal. For the

inverted pendulum problem, the performance of each individual is measured according to

the number of time steps through which the pole remains balanced. Once the pole balanc-

ing fails, the fitness function returns the time step count tobe used as the fitness value for

the individual. The pole balancing fails if any of the following conditions become true:

|θ| ≥ θmax

or

|x| ≥ xmax

The time step value returned by the fitness function is used todetermine the selection

probability for each individual.

5.3.5 Evolution Results

The following parameters were used to drive the evolutionary process:

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 115

Individuals: 10
Generations: 80
Crossoverα 0.1
pc 0.1
pm 0.01
θmax 12
xmax 2.5

Table 5.1: Evolution parameters forxmax= 2.5.

The final evolutionary results of the corrective force application components were as

follows:

θ corrective force fθ = 19.32·θ3

x corrective force fx = 3.74·x3

The sum of the two force components was used as the final force magnitude to be

applied to the cart. We notice that the scaling parameter forfθ has evolved to a value

close to 1.0 showing that theθ correction requires the most amount of force in order to

achieve the best results. The scaling parameter forfx, however, has evolved to a smaller

value.

Figure 5.4 shows the results of the evolutionary process. Wenotice a gradual increase

in the overall fitness of individuals throughout the 80 generations of evolution.

5.3.6 Problem Expansion

We now present a slight expansion of the problem in an aim to promote system stability

as part of the evolutionary process. We repeat the previous genetic experiment with a

single modification of the fitness function limiting thexmax parameter to 1.0 instead of

2.5. Following this newly introduced limitation, the cart must remain within 1.0 unit of

the point of origin in order for the balancing to be considered successful. Table 5.2 shows

the parameters used in the evolutionary process.

Although we do not view a significant change infθ asxmax is reduced, we do notice a

significant increase infx in order to maintain the cart closer to the origination point. The

final evolved force application functions forxmax= 1.0 are defined as:

θ corrective force fθ = 18.68·θ3

x corrective force fx = 11.46·x3

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 116

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 5.4: Evolutionary results forxmax= 2.5.

Individuals: 10
Generations: 80
Crossoverα 0.1
pc 0.1
pm 0.01
θmax 12
xmax 1.0

Table 5.2: Evolution parameters forxmax= 1.0.

Figure 5.5 shows the results of thexmax= 1.0 problem variation. We notice a gradual

increase in performance very similar to the previous results. The average fitness results

demonstrate that by applying the correct behavior application, we may maintain success-

ful evolution, even as more constraints are placed on the system.

5.3.7 PID Control

We further expand the problem methodology to utilize evolved PID controller actions

instead of control strategy actions. This change would allow us to gauge the efficiency

of utilizing evolved PID compared to other methods. For thisproblem, we use the same

network layout as in the previous experiment. However, we limit the action nodes to only

two described as follows:

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 117

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 5.5: Evolutionary results forxmax= 1.0.

• Action a1 is configured as a PID action which aims to find the most optimalPID

control strategy using the pole angleθ as input and outputting the force component

value fθ.

• Action a2 is configured as a PID action using the distance from the origin x as input

and outputting the force component valuefx.

In the previous experiment, the velocity of the cartv and the angular velocity of the

poleω were not used as part of the balancing strategy. The evolved PID strategy, however,

utilizes the distancex and the angleθ to internally calculate the associated rates of change

to allow for more efficient and stable control.

The main goal of the PID control evolution is to find the most optimal PID parameters

Kp, Ki andKd to satisfy the equation

f = Kp ·e+Ki

∫

e·dt+Kd
de
dt

(5.3)

where f is the resultant force calculated by the controller, ande represents the difference

between the current state of the system and a desired goal state.

For the purposes of controlling the pole, we utilize the two force valuesfθ and fx to

be combined into a single force valuef to be applied to the cart. Given the two input

valuesθ andx, the two forcesfθ and fx are defined as:

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 118

fθ = Kpθ ·θ+Kiθ

∫

θ ·dt+Kdθ
dθ
dt

(5.4)

fx = Kpx ·x+Kix

∫

x·dt+Kdx
dx
dt

(5.5)

whereθ represents the angle of the pole andx represents the distance from the origin.

The forcef to be applied to the cart is defined as

f = fθ + fx (5.6)

Table 5.3 shows the parameters used in the evolutionary process:

Individuals: 50
Generations: 50
Crossoverα 0.2
pc 0.1
pm 0.05
θmax 12
xmax 1.0

Table 5.3: PID control evolution parameters for inverted pendulum problem.

Figure 5.6 shows the evolution results of the inverted pendulum controller utilizing

evolved PID control. We notice a gradual and stable increasein performance through out

the evolutionary process. The slope of the performance growth is significantly more stable

than that of control strategy based implementation, which is attributed to the PID control

tolerance for slight changes in the PID parameters. Figure 5.7 shows the final evolved

guided trigger network for the inverted pendulum problem utilizing PID control. The

figure shows the final PID parameter values attained through the evolutionary process.

5.4 Robotic Arm

This section presents another robotic control problem which relies heavily on the evolu-

tion of trigger vector parameters as well as action parameters. The problem demonstrates

the evolution of the trigger network layout in an effort to achieve higher population fit-

ness. The problem is based on a robotic arm consisting of a base and two partitions

connected using universal joints. The robotic arm setup is shown in Figure 5.8. As seen

in the figure, the arm is stationed in front of a wall which contains a tunnel large enough

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 119

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 5.6: Evolution progression of the inverted pendulum problem utilizing evolved
PID control.

Figure 5.7: Evolved guided trigger network for the inverted pendulum problem utilizing
PID control.

to accommodate the robotic arm being extended within. Towards the end of the tunnel, a

target sphere is placed marking the desired destination forthe tip of the robotic arm.

Since the arm is given the freedom to rotate in any direction,collision with the wall

or the ground is prohibited. If collision occurs, the individual is considered to have failed

the task and given a fitness value of zero. Otherwise, both armpartitions can move freely

on two different axis for each joint. The arm has four degreesof freedom and the only

limitations placed on the motion of the arm are dictated by the low and high stop points

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 120

of each of the joint axis.

Figure 5.8: Robotic arm problem setup showing the target sphere representing the desired
destination for the tip of the arm.

5.4.1 Action Specifications

The robotic arm is controlled via two universal joints. The first joint connects the lower

arm partition to the base, and the second joint connects the upper arm partition to the

lower one. Since each of the universal joints operates on twodegrees of freedom, the

entire arm has four degrees of freedom for which control commands may be issued. The

robotic arm control scenario translates to four different actions to be encoded in the trigger

network. The four actions are listed as follows (Figure 5.9):

• Action a1 is configured as a direct control action to control the lower universal joint

issuing commands to control the joint axis movement perpendicular to the wall.

Hence, the action may issue commands to move the entire arm closer or further

away from the wall.

• Action a2 is configured as a direct control action to control the lower universal joint

issuing commands to control the joint axis movement parallel to the wall. Hence,

the action may issue commands to move the entire arm to the right or to the left

relative to the wall tunnel.

• Action a3 is configured as a direct control action to control the upper universal joint

issuing commands to control the joint axis movement perpendicular to the wall.

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 121

Hence, the action may issue commands to move the upper arm partition closer or

further away from the wall.

• Action a4 is configured as a direct control action to control the upper universal joint

issuing commands to control the joint axis movement parallel to the wall. Hence,

the action may issue commands to move the upper arm partitionto the right or to

the left relative to the wall tunnel.

Figure 5.9: Action specifications for the robotic arm problem.

The four actions listed above are duplicated as actionsa5, a6, a7, anda8 respectively

for the purposes of using an instance of each action in two different sub networks utilized

within the network.

5.4.2 Initial Network Layout

The initial layout for the robotic arm problem utilizes two sub networks representing

two distinct behaviors to be performed in succession by the agent. Each of the two sub

networks will contain instances of all the actions the agentis capable of performing. The

network is configured where one of the sub networks is triggered by the network root,

and once all the actions of that first network conclude their execution cycle, the second

subnetwork is then triggered to perform its own actions.

The first subnetwork utilized in the network is labeledb1, which is triggered directly

by the root, and in turn it triggers its four internal actionsa1, a2, a3, anda4. The trigger

vectors connecting the relay nodeb1 to the four actions are assigned a trigger vector

magnitude between 0.0 and 1.0. The exact value is to be genetically evolved.

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 122

The second subnetwork utilized is labeledb2. Once all the actions ofb1 conclude their

execution,b2 is triggered. This is indicated by the presence of trigger vectors connecting

each of the actions ofb1 to the relay nodeb2. Each of the trigger vectors enteringb2

are assigned a magnitude of 1.0. This indicates thatb2 is triggered immediately after

the associated action has concluded. Onceb2 is triggered, it triggers its own associated

actions,a5, a6, a7, anda8 depending on the trigger vector magnitude utilized. The exact

magnitudes are also evolved to a value between 0.0 and 1.0.

Figure 5.10: Initial trigger network layout for the robotic arm problem.

5.4.3 Network Guidance

For the presented problem, we limit the network guidance to the minimum in order to

fully demonstrate the network evolution phases. Although insight into the problem sug-

gests that since the tunnel is directly in front of the robotic arm, the actions designated

for moving both arm partitions in a direction that is parallel to the wall are not needed.

However, we aim to give the evolutionary process a chance to deactivate the actions in

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 123

question by carefully selecting a fitness function that takes into the account any harmful

effects that those actions might cause.

Insight into the problem suggests the following desired configuration that would yield

successful results, even though guidance is not applied to achieve those configurations

(Figure 5.11):

• Actionsa2, a4, a6 anda8 should be deactivated or evolved to a direct angle control

that is close to zero. This would allow the arm to maintain a position in front of the

tunnel opening.

• Behaviorb1 should bring the tip of the upper arm partition in front of thetunnel

opening in preparation for pushing the arm through the tunnel. This is achieved by

utilizing actionsa1 anda3 to position the upper arm partition parallel to the ground

facing the tunnel opening.

• Behaviorb2 should then move the upper arm partition through the tunnel by us-

ing a5 to push the arm towards the wall whilea7 is utilized to keep the arm from

colliding with any of the tunnel walls.

Figure 5.11: Desired robotic arm configuration for behaviorsb1 andb2.

5.4.4 Fitness Function

The fitness function for the robotic arm problem is chosen carefully to maintain the overall

execution goals. The following rules are followed:

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 124

The arm is not allowed to collide with the wall or the ground throughout its
execution cycle. Any collision with the said entities causes the agent to fail
its control attempt and a fitness value of zero is returned.

Any movement along the y-axis that moves the arm away from thetarget
causes the agent to incur a penalty proportional to the deviation distance.

Any movement along the z-axis that moves the arm away from thetarget
causes the agent to incur a penalty proportional to the deviation distance.

Once the entire network has concluded its execution a penalty is applied
proportional to the distance separating the tip of the robotic arm and
the target sphere.

Given the final distance from the y-axis,dy, the final distance from the target along the

z-axis,dz, and the final distance from the target along the x-axis,dx, the fitness function

f is defined as:

f = d5
x +d5

y +d5
z (5.7)

5.4.5 Evolution Results

Due to the higher complexity of the presented problem, a dynamic individual count is

utilized for the evolutionary process. The dynamic allocation of individuals allows the

system to start with a high individual count and then gradually decrease the count to a

minimum value as the system approaches the end of the evolutionary cycle. The following

parameters are used to drive the evolutionary process:

Individuals (Minimum): 50
Individuals (Maximum): 200
Generations: 100
Crossoverα 0.2
pc 0.1
pm 0.01

Table 5.4: Evolution parameters for the robotic arm problem.

The robotic arm evolution utilizes a two-phase approach in an effort to reach the de-

sired goals in a short duration of time. The first phase evolves the behavior presented by

b1, while the second phase expands the network training to include the behavior presented

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 125

by b2. The fitness function is structured in a manner that gradually forces the tip of the

robotic arm closer to the tunnel opening by the end of the execution of the first behavior.

Figure 5.15 shows the best performing individual representing behaviorb1 after 25

generations of evolution.

Figure 5.12: Best performing individual representing behaviorb1 after 25 generations of
evolution.

We notice the assortment of urgency values that have been reached for the different

actions performed. The urgency of action execution becomessignificantly more relevant

in the execution ofb2 as the possibility of colliding with the wall or the ground ismuch

higher. The urgency values evolved, along with the angle commands, guarantee that the

arm does not collide with any of the walls or the ground. In addition, the fitness function

guarantees the selection of individuals achieving more proximity to the target.

Actionsa2 anda4 contribute to the lateral movement of the arm, and we notice that

the combination of angle commands given allow the top of the upper arm partition to still

be close to the tunnel opening. Figure 5.15 shows the arm position of the best performing

individual after 25 generations of evolution.

As the evolution process continuous, we find that the geneticprocess eventually elim-

inates actiona3 by deactivating it completely. This elimination allows thesystem to

achieve higher consistency by reducing the lateral movement keeping the arm closer to

the desired target position. The best performing network representing behaviorb1 after

50 generations of evolution is shown in Figure 5.14.

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 126

Figure 5.13: Arm position of best performing individual after 25 generations of evolution.

Figure 5.14: Best performing individual representing behaviorb1 after 50 generations of
evolution.

We notice that the angle and urgency commands of actionsa1 anda3 are still in close

proximity to their associated values in Figure 5.15. The angle command associated with

actiona4 has converged to value small enough to maintain a relativelyhigh fitness value.

After the first 50 generations of evolution, the second phaseof the genetic process

is initiated through the inclusion of the second subnetwork, b2. This allows the genetic

process to evaluate the performance of each individual as a whole including all associated

behaviors. Starting from a point already close to the tunnelopening increases the chances

for finding a proper configuration that would allow the arm to achieve the goal. A desired

configuration would involve increasing the angle associated with actiona1 moving the

arm closer to the wall while decreasing the angle associatedwith actiona2 in order to

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 127

Figure 5.15: Arm position of best performing individual after 50 generations of evolution.

keep the second arm partition level. This would allow the armto move through the tunnel

without colliding with any of the walls.

The final configuration of the trigger network after 100 generations of evolution is

shown in Figure 5.16. In the second phase of evolution, actions a6 anda8, which are

responsible for the lateral movement of the arm, were eliminated by the evolutionary

process. The utilization of only actionsa5 anda7 allows the system to converge to a

solution faster as both actions force the arm to move in a direction that is normal to the

wall surface.

The final position of the complete arm behavior after 100 generations of evolution

is shown in Figure 5.17. The genetic process was successful in evolving an individual

capable of reaching the desired evolution goals. The execution sequencing and urgency

were critical in allowing the arm to navigate the tunnel without colliding with any of the

wall surfaces ultimately reaching a position close to the target.

5.5 Conclusion

This chapter demonstrated several testing scenarios utilizing trigger network evolution for

achieving successful control of articulated robotic structures. It has been shown that the

network evolution methods presented are capable of achieving the desired goals for both

continuous PID-based control as well as complex execution sequencing of joint actions.

In addition to the base network evolution, the careful application of network guidance

has also been proven to increase the overall fitness of individuals relative to unguided

evolution. This is accomplished through the simplificationof the network structure by

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 128

Figure 5.16: Final configuration of trigger network for the robotic arm problem after 100
generations of evolution.

reducing the number of variables involved in the genetic process. A reduced search space

increases the system likeliness for converging to a solution that meets the preset goals.

The careful selection of evolution parameters, like generation size as well as crossover

and mutation probabilities for example, also play a crucialrole in the achievement of

desirable evolution results.

CHAPTER 5. TESTING THE EVOLUTION PLATFORM 129

Figure 5.17: Final robotic arm position after 100 generations of evolution.

Chapter 6

EVOLUTION OF ROBOTIC MOBILITY

6.1 Introduction

The guided genetic evolution methodologies have been presented as an efficient tool for

the evolution of autonomous robotic control. The previous chapter presented several ex-

amples relating to the application of the genetic frameworktowards the evolution of dif-

ferent types of robotic structures. The guidance of the genetic process has also been

shown to increase the evolution efficiency by reducing the search space size allowing for

the achievement of higher fitness.

In this chapter, the more complex problem of controlling a biped robot is presented.

The number of degrees of freedom as well as the dynamics of therobotic structure signif-

icantly complicates the control problem. Hence, we presenta framework for the structur-

ing of the control problem to achieve biped mobility within aknown simulated environ-

ment. The robotic articulated structure will be presented along with the configuration of

each of the joints utilized. The trigger network layout willalso be presented to show the

execution sequencing of the different agent behaviors. Thedetails of the network guid-

ance applied to the network will be discussed to convey the effect of the guidance process

on the convergence rate and the accuracy of the control strategy.

6.2 Robotic Structure

The structure of the articulated biped robot consists of multiple body parts connected

through the use of hinge, universal and ball-and-socket joints. The joint selection is made

based on the degrees of freedom required at each of the robotic joints. For each of the joint

axis, low and high stop points are specified depending on the desired range of motion for

the joint. Since the structure of the biped robot resembles that of a the human body, the

attributes of the human joints were used as the basis for specifying the parameters for the

biped. The trigger network layout is dependant on the joint count as well as the number

of axis used at each joint, hence, the articulated structurewas configured to support the

minimum requirements for biped locomotion in an effort to minimize the complexity of

the control problem.

130

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 131

In order to achieve maximum efficiency in the structuring of the biped, a direct map-

ping was utilized between the average human body dynamics and that of the biped robot.

This method allowed for the approximation of proper joint locations to connect the differ-

ent body parts. Figure 6.1 shows the general articulated structure for the biped robot. As

seen in the figure, boxes were used as the main primitive objects representing the differ-

ent body parts. The utilization of primitive object types drastically improved the real-time

performance of the system without a significant impact on thesimulation accuracy. A uni-

form density was used for all parts utilized in the robotic structure; hence, the weight of

each body part was determined based on volume.

Figure 6.1: General articulation structure for biped robot.

6.2.1 Lower Section Articulation

The lower section of the robotic agent consists of the thighs, legs, and feet. Three body

parts were utilized on each side of the body while maintaining symmetry between both

sides. Table 6.1 shows the dimensions and orientation of thebody parts utilized in the

lower section of the articulated structure.

The joint coordinates of the lower section of the biped are shown in Figure 6.2. For

each joint, The x, y and z coordinates are given indicating the joint anchor. The knee and

toe joints for both legs are structured as hinge joints, which means that they operate along

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 132

Part Position(x, y, z) Dimensions (x, y, z) Orientation(x, y, z)
Left Toe (9.5, 0.0, 0.0) (1.27, 0.76, 0.63) (0.0, 0.0, 0.0)
Left Foot (3.32, 1.92, 0.0) (1.42, 3.07, 1.19) (0.0, 0.0, 0.0)
Left Leg (3.32, 1.92, 4.85) (1.67, 2.06, 7.31) (-0.10, 0.11,0.0)
Left Thigh (2.80, 2.05, 11.90) (1.691, 2.08, 8.10) (0, 0.17,0.0)
Right Toe (-9.5, 0.0, 0.0) (1.27, 0.76, 0.63) (0.0, 0.0, 0.0)
Right Foot (-3.32, 1.92, 0.0) (1.42, 3.07, 1.19) (0.0, 0.0, 0.0)
Right Leg (-3.32, 1.92, 4.85) (1.67, 2.06, 7.31) (-0.10, -0.11, 0.0)
Right Thigh (-2.80, 2.05, 11.90) (1.691, 2.08, 8.10) (0, -0.17, 0.0)

Table 6.1: Parameters utilized for the lower section of the robotic structure.

a single axis. The ankle joint, however, is structured as a universal joint which operates

along two axis allowing the controller to rotate the foot upwards and downwards as well

as to the sides.

Figure 6.2: Biped lower section joint coordinates.

Joint Axis 1 Axis 2
Left Toe (-0.52, 0.87)
Left Ankle (-0.52, 1.31) (-0.43, 0.43)
Left Knee (-0.001, 2.97))
Right Toe (-0.52, 0.87)
Right Ankle (-0.52, 1.31) (-0.43, 0.43)
Right Knee (-0.001, 2.97))

Table 6.2: Low and high stop values for lower section joints.

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 133

Table 6.2 shows the low and high stop values for each of the joint axis for the lower

section of the biped. A single set of values is specified for each of the toe and knee joints.

Two sets of stop values are provided for the knee joint; the first set given (axis 1) relates

to the up/down rotation, while the second set (axis 2) relates to the side rotation of the an-

kle. Although the controller aims to maintain specific articulation angles at all instances,

the low and high stop points guard against the occurrence of irregular configurations if

excessive forces are applied to one or more of the body parts.

6.2.2 Middle Section Articulation

The middle section of the biped consists of the hip and torso parts. The hip connects to the

legs utilizing ball-and-socket joints, which operate on three axis. The torso also connects

to the hip utilizing a ball-and-socket. In addition, the torso connects to the upper body

parts, consisting of the arms and head. Table 6.3 shows the dimensions and orientation of

the body parts utilized in the middle section of the articulated structure, while Figure 6.3

shows the coordinates utilized for the placement of each of the middle section joints.

Part Position(x, y, z) Dimensions (x, y, z) Orientation(x, y, z)
Hip (0.0, 2.05, 16.8) (4.37, 3.27, 3.81) (0.0, 0.0, 0.0)
Torso (0.0, 2.05, 20.09) (6.27, 4.35, 6.91) (0.0, 0.0, 0.0)

Table 6.3: Parameters utilized for the middle section of the robotic structure.

Figure 6.3: Biped middle section joint coordinates.

As mentioned above, a ball-and-socket joint, representingthe waist, is used to connect

the torso to the hip. The joint operates on three axis allowing for movement of the torso in

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 134

any direction as well as for rotation. The agent’s ability torotate the upper body section

forwards, backwards or to the side significantly improves the agent’s balancing abilities

while walking. The hip joints for both legs consist of ball-and-socket joints operating

on three axis. This allows for the legs to rotate in any direction resembling known hip

movement. Table 6.4 shows the low and high stop values for each of the joint axis for the

middle section of the biped.

Joint Axis 1 Axis 2 Axis 3
Waist (-1.31, 0.52) (-0.52, 0.52) (-0.52, 0.52)
Left Hip (-1.39, 0.34) (-0.61, 0.61) (-0.69, 0.69)
Right Hip (-0.34, 1.39) (-0.61, 0.61) (-0.69, 0.69)

Table 6.4: Low and high stop values for middle section joints.

The first axis of the waist joint controls the forwards and backwards movement, while

the second axis controls the lateral movement. Both hip joints utilize the same config-

uration where the first axis controls the lateral movement, the second axis controls the

rotation of each leg, while the third axis controls the forwards and backwards movement.

6.2.3 Upper Section Articulation

The upper section of the robotic structure consists of the head, shoulders and arms. Al-

though the upper body parts do not contribute directly to themobility of the robot, they

play a crucial role in the task of keeping the robot balanced.The shoulders and arms

also paly a role in minimizing the swaying side effect that occurs during the execution of

the walking behavior. Table 6.5 shows the dimensions and orientation of the body parts

utilized in the upper section of the articulated structure.

Part Position(x, y, z) Dimensions (x, y, z) Orientation(x, y, z)
Head (0.0, 2.05, 24.85) (2.54, 3.22, 3.64) (0.0, 0.0, 0.0)
Left Shoulder (5.60, 2.05, 19.56) (4.92, 2.12, 1.94) (0.0, 0.0, 0.0)
Left Arm (8.94, 2.75, 21.14) (3.85, 1.55, 1.29) (0.0, -0.07,0.0)
Right Shoulder (-5.60, 2.05, 19.5) (4.92, 2.12, 1.94) (0, 0.0, 0.0)
Right Arm (-8.94, 2.75, 21.14) (3.85, 1.55, 1.29) (0.0, 0.07, 0.0)

Table 6.5: Parameters utilized for the upper section of the robotic structure.

The neck is connected directly to the torso utilizing a ball-and-socket joint that would

allow rotation in any direction. A ball-and-socket joint isalso used for the shoulders

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 135

to allow freedom of motion along any axis. The elbows, however, utilize a hinge joint

allowing rotation along a single axis. The exact joint anchor coordinates are shown in

Figure 6.4. Table 6.6 shows the low and high stop values for each of the joint axis for the

upper section of the biped.

Figure 6.4: Biped upper section joint coordinates.

Joint Axis 1 Axis 2 Axis 3
Neck (-1.13, 1.13) (-1.13, 1.13)
Left Shoulder (-1.22, 1.57) (-0.43, 0.43) (-1.39, 1.71)
Left Arm (-0.01, 1.31)
Right Shoulder (-1.57, 1.22) (-0.43, 0.43) (-1.71, 1.39)
Right Arm (-1.31, 0.01)

Table 6.6: Low and high stop values for Upper section joints.

6.2.4 Polygon-based Representation

In order to enhance the realism of the agent rendering, a polygon-based representation of

each of the body parts is utilized. A modeled object is used for the visual representation

of each part of the articulated structure to better represent its associated purpose, then

the modeled object is positioned to be encapsulated by the primitive object being utilized

for articulation. The primitive objects are still the main parts used for volume calcula-

tions as well as for collision detection and avoidance, yet the use of the modelled objects

significantly enhanced the realistic rendering of the robotic structure.

Figure 6.5 shows a polygonal wire frame rendering of the robotic agent. The fig-

ure also shows the location of all joint anchors which correspond to the exact positions

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 136

Figure 6.5: Polygonal wire frame rendering of the robotic agent showing the position of
joint anchors.

Figure 6.6: Shaded rendering of the robotic agent.

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 137

utilized with the primitive object types. Figure 6.6 shows ashaded rendering of the agent.

6.3 Action Specifications

The actions to be utilized in the evolutionary process relate directly to the degrees of

freedom associated with each of the articulation joints. Each axis of each joint must

have an associated direct control action configured to move the body parts about the joint.

Additional actions may be used to incorporate PID or strategy-based control in the overall

strategy. The minimum and maximum angles associated with each direct control action

are set to correspond to the low and high axis stop values respectively.

Table 6.7 shows the action specifications of the lower section of the biped. The over-

all network complexity was reduced through the representation the entire foot as a sin-

gle object. Hence, the toe joints were fixed at a rotational angle of zero. Preliminary

experimentations have demonstrated good behavioral results utilizing a single object to

represent the foot.

Action Joint Axis Description
a1 Left Ankle 1 Front/Back movement
a2 Left Ankle 2 Lateral movement
a3 Left Knee 1 Lateral movement
a4 Right Ankle 1 Front/Back movement
a5 Right Ankle 2 Lateral movement
a6 Right Knee 1 Front/Back movement

Table 6.7: Biped Action specifications for lower section.

The action specifications for the middle section are shown inFigure 6.8. The hip

joints are the two most essential components of the agent’s mobility. They control both

forward-stepping behavior as well as the side-stepping behavior of the robot.

Table 6.9 shows the action specifications of the upper section of the biped. The arms

and neck do not contribute directly to the stepping action, but they contribute to the bal-

ancing and stability of the biped.

In addition to the direct joint control actions listed, several PID control actions are

utilized to maintain essential desired configurations. Thefollowing list details the PID

control actions used as part of the biped stepping motion:

• a25 - Waist Center: In order to assist in the continuous balancing of the biped, this

action is used to keep the upper body of the agent centered while the weight is

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 138

Action Joint Axis Description
a7 Left Hip 1 Front/Back movement
a8 Left Hip 2 Leg rotation
a9 Left Hip 3 Lateral movement
a10 Right Hip 1 Front/Back movement
a11 Right Hip 2 Leg rotation
a12 Right Hip 3 Lateral movement
a13 Waist 1 Front/Back movement
a14 Waist 2 Lateral movement

Table 6.8: Biped Action specifications for middle section.

Action Joint Axis Description
a15 Left Shoulder 1 Front/Back movement
a16 Left Shoulder 2 Arm rotation
a17 Left Shoulder 3 Lateral movement
a18 Left Arm 1 Front/Back movement
a19 Right Shoulder 1 Front/Back movement
a20 Right Shoulder 2 Arm rotation
a21 Right Shoulder 3 Lateral movement
a22 Right Arm 3 Front/Back movement
a23 Neck 1 Front/Back movement
a24 Neck 2 Lateral movement

Table 6.9: Biped Action specifications for upper section.

shifting from side to side.

• a26 - Left Ankle Level: In preparation for meeting the ground plane after stepping

using the left foot, the foot is kept horizontal to the groundto maximize the agent’s

stability through the stepping motion.

• a27 - Right Ankle Level: The same foot leveling strategy is applied to the right foot

as the right leg meets the ground after stepping with the right foot.

6.4 Network Layout

The biped mobility is focused around several sub-behaviorsthat must be executed in

succession to allow the agent to attain a walking behavior. The main network layout is

designed to reflect the different parts of the overall walking motion. In addition, the net-

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 139

work shows the relationships that exist between the different parts as well as the execution

sequencing that must be followed in order to achieve successful mobility. The different

phases involved in the walking motion are listed as follows:

• Agent shifts weight to leg A

• Agent prepares leg B for stepping

• Agent steps forward using leg B while shifting weight to it

• Agent steps forward using leg A while shifting weight to it

Maintaining continuous balance while executing all phaseslisted is clearly a high pri-

ority of the execution strategy. Balancing is mostly achieved through the careful execution

of direct control sequences. Figure 6.7 shows the layout of the main phases involved in

the biped walking motion.

Figure 6.7: Main phases of the biped walking motion.

The first phase of the walking motion involves shifting the entire weight of the robot to

one foot in preparation for stepping with the other. In the given scenario, the agent starts

its motion balanced on both feet, then shifts its weight to the right foot while maintaining

its balance. A direct joint control strategy must be createdto allow the agent to steadily

shift its weight without making any actions that would causeit to lose its balance. Each

joint in the articulated body could potentially be involvedin the first phase of the walking

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 140

motion, however, in order to reduce the complexity of the trigger network, guidance is

applied in order to minimize the number of joint axis. The joint axis selected for the first

phase of the motion, as well as the reasoning behind the selections, are classified in the

following list.

• Left Ankle: In order to initiate a motion towards the right foot, the left ankle is used

to push the body laterally towards the right.

• Right Ankle: Shifting the agent’s weight to the left foot causes a shift in the center

of mass of the body. Adjusting the angle of the right ankle joint enables the agent

to balance its weight on just one foot.

• Left Hip: Moving the right hip laterally also allows the agent to pushits body

towards the other foot assisting in the weight transfer.

• Right Hip: The proper positioning of the right hip assists in balancing the entire

body in the new desired position as the center of mass is movedto the right.

Once the agent is balanced on the right foot, the left leg is pulled closer to the body

in preparation for the stepping action. This involves commanding the hip joint to pull the

leg closer while applying changes to the knee and ankle positions. The joint axis to be

manipulated in this phase of the motion are classified as follows:

• Left Hip: At this stage, the hip is pulled closer to the body prior to launching the

body forward.

• Left Knee: The entire leg is placed in a suitable position for steppingby pulling the

leg up utilizing the hip joint as well as the bending of the knee joint.

• Left Ankle: The ankle must be positioned properly in order to meet the ground after

the stepping action has been carried out.

The actual stepping action involves utilizing all lower body joints to achieve the de-

sired goal. The left foot is launched forward by direct jointcontrol being applied to the

hip and knee. At the same time, the right hip and ankle are usedto propel the body for-

ward. The following direct joint control actions are applied to the lower body section of

the piped in order to carry out a stepping action with the leftfoot:

• Left Hip: The left leg is launched forward and outward in order to meetthe ground

after propelling the body forward.

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 141

• Left Knee: In order for the left leg to clear the ground, the lower part of the leg is

raised by bending the left knee. During the stepping action,the leg is straightened

once more in order to meet the ground.

• Right Hip: The backward rotation of the right hip helps propel the entire body

forward due to the friction with the ground plane.

• Right Ankle: The right ankle also contributes to the forward propulsionby assisting

in leaning the entire body forward.

Once the left foot stepping motion has been completed and theleft foot meets the

ground, the body is given a brief moment to balance itself then the entire process is re-

peated once more for the right foot. The same parameters usedfor the left side of the

body are utilized for the right side in order to reach a cyclicbehavior that would allow

the biped to achieve continuous walking. The main trigger network layout for the biped

walking problem is shown in Figure 6.8.

6.5 Network Evolution

The evolution of the biped trigger network is performed overmultiple phases allowing

the network to converge to a successful solution at each level before proceeding to the

next. The most essential part in the evolution of each phase revolves around the careful

structuring of the associated fitness function. For each phase, the fitness function is for-

mulated in direct correspondence to the specific goals to be achieved by the subnetwork.

This section describes the main goals behind each of the network behaviors as well as the

formulation of the fitness function for achieving those goals.

Subnetworkb1 is responsible for shifting the weight of the biped to the right foot in

order to free the left foot for stepping. The motion must be accomplished in a smooth

manner in order to maintain balance and prevent the biped from overshooting its desired

destination which would result in a loss of balance. The following guidelines are utilized

in the formulation of the fitness function governing the evolution ofb1:

• The location of the right foot must remain unchanged. A change in the location of

the foot results in the application of a penalty proportionate to the distance associ-

ated with the foot displacement.

• The behavior aims to move the center of gravity of the body to the right without

loss of balance. Hence, a reward is applied based on the rightward displacement of

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 142

Figure 6.8: Main trigger network for biped walking motion.

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 143

the center of mass.

• Loss of balance results in the failure of the agent in achieving its goals. In order to

allow for the gradual achievement of successful balancing,a reward is applied based

on the number of time steps in which the agent remains balanced. A maximum time

step count is selected to signify successful balancing in order to proceed with the

next individual in the generation.

Given the right foot displacement,d f , the rightward center of gravity displacement,

dc, and the number of time steps through which the agent has remained balanced,t, the

fitness function is formulated as follows:

f = t +d5
c −d5

f

Table 6.10 shows the parameters utilized in the evolution oftheb1 subnetwork. The

same set of parameters were also used in the evolution of all other network behaviors.

Individuals: 50
Generations: 50
Crossoverα 0.2
pc 0.1
pm 0.01

Table 6.10: Evolution parameters for biped evolution.

The genetic process was successful in converging to a configuration that fulfills the

goals set forth. The agent was able to shift its entire weightto the right foot without losing

balance. The center of gravity was successfully moved to theright a sufficient distance

for the weight transfer to be successful without jeopardizing the agent’s stability. The

final values of the fitness function parameters are as follows:

t 200 (successful balancing)
dc 2.31
d f 0.03

The final direct joint control parameters are shown in Table 6.11. The final joint angles

are given in degrees. In order to simplify the trigger network and to minimize the number

of evolution variables, the execution urgency of all four actions involved was preset to a

value of 2. The posture of the biped after the execution of theb1 behavior is shown in

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 144

Action Angle
a1 19.73
a5 15.35
a7 -30.24
a10 -32.07

Table 6.11: Final direct joint control parameters for behaviorb1.

Figure 6.9: Biped posture after the execution of the evolvedb1 behavior.

Figure 6.9. We notice that the biped is now leaning to the right with all its weight on the

right foot in preparation for stepping with the left foot.

Once the articulated structure is stable and balanced on theright foot, the left foot

must be positioned properly in order for the stepping motionto commence. This is ac-

complished by pulling the leg closer to the body and bending the knee in order to clear

the ground while stepping. This process must be completed while maintaining the overall

balance of the structure.

The structuring of the fitness function which governs the evolution of behaviorb2 is

based upon the requirement of maintaining the balance of thebiped as well as minimizing

the change in the position of the center of gravity. The rightfoot position should also

remain static through out the behavior. Given the right footdisplacement,d f , and the

center of gravity displacement,dc, the fitness function is formulated as follows:

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 145

f = −|dc|5−|d f |5

The final direct joint control parameters for behaviorb2 are shown in Table 6.12. The

execution urgency of all four actions involved was preset toa value of 2. The posture of

the biped after the execution of theb1 behavior is shown in Figure 6.10.

Action Angle
a3 47.36
a4 15.65
a7 -24.94
a9 -22.81

Table 6.12: Final direct joint control parameters for behaviorb2.

Figure 6.10: Biped posture after the execution of the evolvedb2 behavior.

Once the articulated structure is set for the walking motionto take place, a cyclic

strategy must be established to utilize the left and right legs in order to achieve continuous

forward motion. Behaviorsb3 and b4 are responsible for stepping with the left foot,

while behaviorsb5 andb6 are responsible for stepping with the right. The same control

parameters utilized for the stepping with the left side are to be applied to controlling the

right side in a symmetric manner. This strategy reduces the complexity of the stepping

problem and promotes the cyclic stability of the entire motion.

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 146

The fitness function associated with the stepping motion is based on the agent’s ability

to propel itself forward within a specific duration of time. In order for the motion to be

successful, the balance of the biped must be maintained for the entire duration. The fitness

value is assigned based on the distance by the biped with a penalty being applied in the

event that the biped loses its balance. Given the biped forward displacement,dy, and the

deviation from the axis line,dx, the fitness function, given that the biped does not lose its

balance, is formulated as follows:

f = dy−|dx|5

If the biped does lose its balance before the end of the stepping duration, a penalty is

applied reducing the agent’s fitness, and the fitness function is formulated as follows:

f = dy−|dx|5−15

Figure 6.11 shows the evolution progression of the biped stepping motion over 50

generations of evolution using the genetic parameters listed in Table 6.10.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 F
itn

es
s

Generation Number

Figure 6.11: Evolution progression of the biped stepping motion over 50generations.

The evolution progression shows a steady and gradual increase in average population

fitness over the 50 generations of evolution. The biped initially would fall within the first

few steps as shown in Figure 6.12, however, a strategy for successful stepping is slowly

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 147

developed through the genetic selection and evolution of trigger network configurations

that exhibit the most success in the forward mobility of the biped. Figures 6.13 to 6.17

show the entire successful stepping motion of the biped.

The execution urgency of all four actions involved was preset to a value of 2. Actions

a3 anda6 represent the knee bending in the stepping leg during the stepping motion. The

bending of the knee involves a direct action to bend the knee and another to straighten

it before making contact with the ground. The execution urgency of both the first and

the second knee actions was set to a value of 1. The second kneeangle was set to zero

to guarantee the straightening of the entire leg before touching the ground. The final

direct joint control parameters for the first phase of cyclicstepping behavior are shown in

Table 6.13.

Action Angle
a1 .8.05
a5 7.51
a6 42.17
a7 12.92
a9 -10.13
a10 -13.26
a12 -9.94
a13 14.79

Table 6.13: Final direct joint control parameters for the first phase ofthe cyclic stepping
behavior.

The same set of evolved parameters are is used in the second phase of the cyclic

stepping motion represented by behaviorsb5 andb6. This involves executing the same

direct control strategy on the opposite side of the biped. This strategy produces favorable

results, as shown in Figure 6.11.

6.6 Conclusion

Guided genetic evolution methodologies has been shown to successfully represent and

solve complex robotic control problems, including the problem of biped robot balancing

and walking. The first phase of the solution involves the representation of the robot control

abilities through the utilization of the trigger network structure. The utilization of trigger

network encoding reduces the demands on the designer in regards to determining the

exact control components required for achieving a specific result. Instead, only the main

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 148

candidate components that may contribute to achieving the preset goals are required.

The trigger network evolution algorithm allows the geneticprocess to choose the best

components suitable for achieving the desired goals based on the performance of each

agent. The careful formulation of an appropriate fitness function guarantees the elim-

ination of control strategies that reduce the system performance while maximizing the

presence of strategies that move the population closer to converging to an appropriate

solution.

Although the representation and guidance methodologies allow for significant flex-

ibility in the formulation of the control problem, the levelof guidance utilized greatly

affects the outcome of the genetic process as well as the precision of the results. A higher

guidance level allows the genetic process to converge faster. In addition, reliable and pre-

cise guidance has been shown to significantly improve the final control results produced

by the system.

Figure 6.12: Stepping motion: biped falling during the initial phases of training.

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 149

Figure 6.13: Stepping motion: beginning of stepping motion utilizing left foot.

Figure 6.14: Stepping motion: left foot makes contact with the ground.

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 150

Figure 6.15: Stepping motion: continued stepping utilizing right foot.

Figure 6.16: Stepping motion: right foot makes contact with the ground.

CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 151

Figure 6.17: Stepping motion: continued stepping utilizing left foot.

Chapter 7

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the methodologies presented in this dissertation in relation to the

representation and evolution of robotic controllers for the real-time control of articulated

robotic structures. The chapter will also cover the challenged faced by the proposed

framework as well as suggestions for future work.

7.1 Summary of Work

Autonomous robotic control is an extremely intriguing areaof study that could pave the

way for many beneficial applications. However, the control of articulated structures has

proven to be a problem of extreme difficulty due to the complexnature of the internal

dynamics of the robot as well as the complexity of the interactions between the robot

and the environment. In order to conquer such complexity, anorganized algorithmic

framework is needed for the efficient encoding and training of robotic controllers in a

manner that circumvents some of the existing hurdles.

This dissertation has explored and addressed the problem ofarticulated robotic control

through three main contributions:

1. A new connectionist model, labeledTrigger Networkswas created for the encoding

of agent attributes and control capabilities. The model offers a high level descriptive

structure for the representation of control strategies at any level of sophistication

for the control of articulated robots. Trigger networks offer a time-based model

for the description of execution sequencing as well as control urgency associated

with each of the robotic joints. The network structure has proven successful in

the representation of robotic behaviors associated with robotic arms, four-legged

robots, as well as biped robots.

2. A genetic evolution algorithm was formulated for the evolution of trigger networks

based on one or more fitness functions associated with the desired behaviors. The

algorithms presented as part of the evolution framework allows for the processing

of trigger networks through genetic selection, crossover,and mutation operators

over multiple generations in an effort to achieve successful fulfillment of the preset

152

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 153

behavioral goals. The genetic algorithms proposed and implemented have proven

to be highly successful in training different types of controllers for performing com-

plex tasks through the utilization of joint control.

3. Mechanisms for guiding the genetic process have been formulated in order to re-

duce the network convergence time and increase the quality of the produced results.

The guidance methodologies have been proven to systematically increase the over-

all fitness of individuals as well as reduce the evolution time required for achieving

the desired evolution goals.

7.2 Limitations of the Proposed Framework

Through the utilization of guided genetic evolution, different classes of robots have been

trained to successfully perform desired tasks with a considerable level of accuracy. In

order to transfer the training methodologies to real robotsoutside of the simulation envi-

ronment, a higher level of uncertainty has to be introduced into the training algorithms in

order to create agents that are more reliably fit for real environments. Real world param-

eters introduce a significant level of unpredictability to the control equation. In order for

the simulated environment to better represent real-world dynamics, a level of noise may

be included as part of the input signal acquisition and jointcontrol modules. The intro-

duction of noise and the evaluation of its effect on the agentbehavior would be essential

for the creation of robotic agents that behave reliably in real-world environments.

The implementation of genetic training methodologies requires a significant amount

of computational power in order to achieve results within a reasonable duration of time.

In order to evolve controllers utilizing low computationalpower, a significant amount of

guidance must be applied to the trigger network to reduce thecomplexity of the problem

being evolved. However, the application of excessive network guidance restricts the evo-

lutionary path of the system and limits the search space to a degree that might produce

harmful results. A balance must be achieved between the network guidance and comput-

ing power utilization in order to maintain the essence of thegenetic process and achieve

the desired training goals.

7.3 Future Directions

Several areas of the guided genetic evolution framework require further investigation:

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 154

1. The introduction of noise in the evolution framework should be investigated in order

to achieve higher levels of reliable fitness of the evolved robotic agents.

2. Alternative evolutionary means should be examined as possible candidates for the

enhancement of trigger network evolution.

3. The combination of trigger networks, genetic evolution,and neural methodologies

should be investigated as a possible grouping that could enhance the training pro-

cess.

4. Additional testing should be performed on trigger network evolution. Such testing

may introduce areas of possible enhancements and modifications.

5. The utilization of agent state determination and transitioning, on a larger scale,

should be investigated as a tool that could enable a higher level of robotic control.

This is achieved through awareness of robotic states, the ability to apply intelligent

transitions between known states, as well as the ability to acquire knowledge of new

states that were previously unknown to the agent.

Appendix A

RIGID BODY ARTICULATION

A.1 Introduction

In order to allow for the evaluation and optimization of the evolutionary techniques pre-

sented in this thesis, a need existed for the development of asimulation environment based

on computational models of the entities being studied. The simulation environment offers

a crucial visual dimension through which the various aspects of the system can be mon-

itored and enhanced. Since this study revolves around the intelligent control of complex

articulated bodies, a comprehensive physical simulation system is needed to model the

different system components as well as their interactions.The simulation physics engine

is responsible for the numeric calculations and transformations determining the position

and orientation of bodies as they interact with each other and the environment. The engine

also works on maintaining the physical constraints that govern the different applications

of the forces and torques being exherted on the articulated structures. The following list

demonstrates the essential parts of the physics engine needed for achieving the desired

simulation goals:

• Particle State Management: The environment has to offer persistence of particle

states. The physical properties of the bodies need to be accurately represented and

utilized in order to produce accurate simulation models.

• Numeric Integration: In order to evolve the system from one state to another, nu-

merical methods are utilized to perform the needed calculations and transforma-

tions. The numerical errors produced by the methods being utilized has to be con-

sidered in order to achieve the accuracy requirements set forth by the simulation.

• Geometric Body Representation: Geometric structures are tied to simulation bodies

in order to achieve accurate representation of the entitiesbeing evolved. Primitive

geometric shapes as well as more complex polyhedra-based models maybe utilized

as representation of articulated bodies.

• Collision Detection and Response: The ability to enforce non-penetrating con-

straints within the system is crucial. Hence, the engine hasto provide means for

155

APPENDIX A. RIGID BODY ARTICULATION 156

detecting collisions between objects as well as the numerical methods required for

resolving such collisions with physical accuracy.

• Joint Constraints: In addition to non-penetrating constraints, joint-based constraints

that allows for the modeling of articulated structures is needed. Different types of

joints may be used on different parts of the structure. At a minimum, the system is

to offer support for hinge, universal, and ball and socket type joints.

• Dynamic Force and Torque Control: Finally, the ability to dynamically apply forces

and torques to different parts of the articulated structures is needed for the simula-

tion of muscle or actuator controls. The system is to offer tools for applying such

elements at different levels depending on the desired movement being simulated.

A.2 Rigid Body Kinematics

A system based on rigid body dynamics is suitable for the coredesign of the physical

simulation engine needed. A rigid body can be viewed as beingcomposed of a system of

particles. Since the general shape of the body is rigid, the particles do not migrate within

the body, so the mass within the body remains consistently distributed. This important

characteristic allows for the analysis of motion of a rigid body using only the linear motion

of its center of mass as well as the angular motion about its center of mass. In essence, the

body can be treated as a single particle within the environment instead of accounting for

the various particles that make up the body. Consequently, the system gains performance

by ignoring deformation calculations and low level particle management without harming

the accuracy of the produced results. Soft contact constraints could be applied to simulate

the elasticity of collisions, which in reality would occur due to object deformations.

In addition to the motion characteristics, the physical characteristics of a rigid body is

also essential for the implementation of collision detection and resolution. The geometric

structure of an object as well as its inertial properties1 are used to describe the shape of a

body as well as its internal structure which affects its massdistribution.

This discussion on rigid body dynamics refers to and condenses some of the content

presented by Baraff [5],[6],[7],[8],[9],[10],[11], Eberly [?], Lengyl [78], Bergen [15] and

Bourg[18], as well as other content with references added where appropriate. Baraff gives

a very thorough and detailed presentation of physically based modeling and rigid body

dynamics. Eberly expands the discussion to cover the simultaneous numeric resolution of

1The body’s inertial properties are based on the associated geometric structure and mass distribution

APPENDIX A. RIGID BODY ARTICULATION 157

multiple contact points using Linear Complementarity. Lengyl presents essential mathe-

matical topics relating to computer simulations, while Bergen offers a thorough coverage

of collision detection techniques and their applications in physical simulation.

A.2.1 Position and Orientation

A rigid body can undergo rotation and translation, so given the geometric shape of the

body, we use the vectorx(t) and the 3 x 3 rotation matrixR(t) to describe the position

and orientation of the body respectively. The vectorx(t) is used to translate the body to

the proper world-space position. The vector describes the position of the body’s center

of mass in space at timet. Since each body is represented as a single particle, this single

vector is sufficient for describing the body’s position. Thegeometric shape of the body is

attached to its center of mass, so the polygonal structure ofthe body is rendered relative

to its position given byx(t).

Similarly,R(t) is used to orient the body transforming the associated geometric shape

from body space into world space as seen in Figure A.1. This step is necessary for detect-

ing collision and determining collision points within the simulation. Several methods can

be used to describe the orientation of the body. The rotationmatrix and quaternion repre-

sentations are the most common and most efficient methods forrepresenting rotation.

Figure A.1: The axes of the body represented byx,y andz are transformed tox′,y′ andz′

wherex′ = R(t)x, y′ = R(t)y andz′ = R(t)z.

Given the orientation headingφ, attitudeθ, and bankψ, the orientation matrixR(t) is

defined as:

APPENDIX A. RIGID BODY ARTICULATION 158

R(t) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (A.1)

Where:

r11 = cos(Φ)cos(Θ)
r12 = sin(Φ)sin(ψ)−cos(Φ)sin(Θ)sin(ψ)
r13 = cos(Φ)sin(Θ)sin(ψ)+sin(Φ)cos(ψ)
r21 = sin(Θ)
r22 = cos(Θ)cos(ψ)
r23 = −cos(Θ)sin(ψ)
r31 = −sin(Φ)cos(Θ)
r32 = sin(Φ)sin(Θ)cos(ψ)+cos(Φ)sin(ψ)
r33 = −sin(Φ)sin(Θ)sin(ψ)+cos(Φ)cos(ψ)

(A.2)

Unit quaternions may also be utilized for the representation of rotation. The use of a

quaternion is advantageous over the use of a rotation matrixas it stores the rotation data

using four components, whereas the rotation matrix representation uses nine parameters.

Reducing the number of parameters avoids the need for costlyalignment to compensate

for matrix drift. This drift accumulates within the simulation as a result of performing

operations on matrices using finite point precision. In order for a quaternion to define

rotation, it must be unit length. However, error buildup in the quaternion calculations

can result in variations in its length. This can be correctedby normalizing the quaternion

which is significantly less costly that combating matrix drift.

Given the orientation headingφ, attitudeθ, and bankψ, the quaternionq is defined as:

q =

q0

q1
q2
q3

=

cos
(

φ
2

)

cos
(Θ

2

)

cos
(ψ

2

)

+sin
(

φ
2

)

sin
(Θ

2

)

sin
(ψ

2

)

sin
(

φ
2

)

cos
(Θ

2

)

cos
(ψ

2

)

−cos
(

φ
2

)

sin
(Θ

2

)

sin
(ψ

2

)

cos
(

φ
2

)

sin
(Θ

2

)

cos
(ψ

2

)

+sin
(

φ
2

)

cos
(Θ

2

)

sin
(ψ

2

)

cos
(

φ
2

)

cos
(Θ

2

)

sin
(ψ

2

)

−sin
(

φ
2

)

sin
(Θ

2

)

cos
(ψ

2

)

(A.3)

A.2.2 Linear and Angular Velocity

Givenx(t) andR(t) defining the position and orientation of the body at timet, we define

ẋ andṘ(t) to describe how the position and orientation of the body change over time. We

also define the vectorv(t) = ẋ to describe the velocity of the translation ofx(t) over time.

The vectorsx(t) andv(t) are defined by the following formula:

APPENDIX A. RIGID BODY ARTICULATION 159

v(t) =
d
dt

x(t)

.

We also define the vectorω(t) to describe the axis about which the body rotates. The

rate of rotation is described by the magnitude ofω(t). The relationship betweenR(t) and

ω(t) is not as straight forward as that ofx(t) andv(t). The rate of change of the body’s

orientation is defined as the product of the vectorω(t) and the matrixR(t).

Ṙ(t) = ω(t)∗R(t) (A.4)

Figure A.2: Linear velocity, represented byv(t), and angular velocity, represented by
ω(t), of a rigid body.

A.2.3 Linear and Angular Momentum

Linear momentum is the tendency of a body moving in a certain direction to maintain its

speed and direction of motion. The linear momentumP(t) of a particle is defined as the

product of its massM and velocityv(t).

P(t) = Mv(t) (A.5)

and since M is a constant, ˙v(t) = Ṗ(t)
M .

The concept of linear momentum also allows for the expression of the effect of the

total forceF(t) applied on a rigid body. The change in linear momentumP(t) is equivalent

to the value of the force applied.

Ṗ(t) = F(t) (A.6)

APPENDIX A. RIGID BODY ARTICULATION 160

The angular momentum of a rigid body is defined as the product of the moment of in-

ertia and the angular velocity. Simply put, as a body spins about a particular axis, angular

momentum is the tendency of a rotating body to maintain its rotational speed and axis. If

no external torque is applied, the angular momentum of the body is conserved. Given the

angular velocityω(t) and the body’sinertia tensor I(t), which is a 3x3 matrix that de-

scribes the body’s mass distribution relative to its centerof mass, the angular momentum

L(t) is defined as

L(t) = I (t)ω(t) (A.7)

Analogous to the relation between linear momentum and force, we obtain the same result

for angular momentumL(t) and torqueτ(t).

L̇(t) = τ(t) (A.8)

A.2.4 The Inertia Tensor

The inertia tensorI (t) is a 3 x 3 matrix that describes the body’s mass distribution and

how it is affected by angular velocity. The inertia tensor can be considered a scaling factor

between the body’s angular momentumL(t) and angular velocityω(t). I (t) is usually

computed in body space and then transformed to world space tocarry out calculations. It

is defined as the matrix:

I =

∫

(y2 +z2)dV −∫ (xy)dV −∫ (xz)dV
−∫ (xy)dV

∫

(x2 +z2)dV −∫ (yz)dV
−∫ (xz)dV −∫ (yz)dV

∫

(x2 +y2)dV

 (A.9)

The integrals are over the volume of the body. If the body is a simple primitive shape

with evenly distributed mass, then the elements ofI (t) have a simple closed form solu-

tion. However, if the shape or mass distribution of the body is more complex, numerical

methods are required to accurately calculate the inertia tensor.

A.2.5 Body State Vector

Now that we have concluded the discussion of the different components that constitute

the state of any body within our simulation, we define the state of a body2 at time t as a

vector X(t) which is defined by the body’s center of mass position x(t), orientation matrix

R(t), linear momentum P(t) and angular momentum L(t).

2as defined by Baraff[11]

APPENDIX A. RIGID BODY ARTICULATION 161

X(t) =

x(t)
R(t)
P(t)
L(t)

(A.10)

At time t, the auxiliary quantities, inertia tensorI (t), angular velocityω(t) and linear

velocityv(t) can be computed as [32]

I (t) = R(t)IbodyRT(t)
ω(t) = I−1(t)L(t)
v(t) = P(t)/M

(A.11)

whereIbody is the inertia tensor in body space and M is the mass of the body.

A.2.6 Integrating the Equations of Motion

The Euler integration formula utilizes a Taylor series expansion allowing for the approx-

imation of the particle state vector at time t+dt given the state vector at time t as well as

its derivative. For example, given the particle displacement at time t and the time step dt

, the new displacement can be reformulated as:

xn+1 = xn +dt ·v(tn,xn) (A.12)

Formula A.12 yields a first-order approximation since only the first derivative is in-

cluded in the calculation. The Euler method has an error of order dt2. The error in-

troduced by Euler’s basic methods can be reduced by using more terms in the Taylor

series. In order to overcome the difficulty associated with being able to determine the

second, third, fourth and higher derivatives of the function being integrated, additional

Taylor series expansions can be utilized to approximate theneeded derivatives, then the

approximated values can be substituted back into the original expansion.

The second-order Runge-Kutta method utilizes an Euler-like trial step to the midpoint

of the interval and then uses the results at the mid-point to complete the step. The Runge-

Kutta method is calculated as follows:

k1 = dt ·v(tn,xn)

k2 = dt ·v(tn + 1
2dt,xn+ 1

2k1)
xn+1 = xn + 1

2(k1 +k2)
(A.13)

In order to use the expansion methods mentioned, the derivative of the state vector is

computed as [32]

APPENDIX A. RIGID BODY ARTICULATION 162

d
dt

X(t) =

v(t)
ω(t)∗R(t)

F(t)
τ(t)

(A.14)

whereF(t) is the total force andτ(t) is the total torque acting on the body at timet.

A.3 Contact Forces

In a typical physical simulation environment, it is necessary to implement constraints that

prevent bodies from inter-penetrating as they move around the simulation space. This is

accomplished by implementing collision detection betweenobjects, and then responding

to the collision in a manner that maintains the constraints.Collision response involves the

calculations of new body states as a consequence to the collisions that take place. Two

commonly used approaches for implementing collision response are: analytical methods

and non-analytical methods (also known as penalty methods).

Collision response utilizing analytical methods formulates and solves Newtonian equa-

tions producing exact results. Typically, the equations require fewer time steps than other

methods for the solution to be produced. As stated by Baraff [5], the disadvantage of

analytical methods stems from the difficulty involved in formulating and implementing

them.

Figure A.3: The penalty method utilizes the insertion of springs at thecontact points to
force colliding bodies apart.

Instead of producing solutions to equations of motion, as shown in figure A.3, the

penalty methods relies on the insertion of temporary springs to separate objects at the

points of contact. The springs apply forces of equal magnitude but opposite directions

APPENDIX A. RIGID BODY ARTICULATION 163

on both objects involved in the collision. Given the spring constantK and the distance

between the colliding objectsd, the magnitude of force applied is calculated as follows:

| f | = k/d. Hence the distance between the objects and the force applied are inversely

proportional. As the separation between the two objects decrease, the resulting separating

force applied on each object increases pushing the objects apart. The penalty methods for

collision response are easy to understand and implement, however, the results produced by

the methods are not exact and are computationally expensive, specially for stiffer springs.

A.3.1 Analytical Contact Response

Suppose a collision occurs between the two bodies A and B as they come in contact at

time t0, let p define the contact point in world space3. The contact pointp corresponds to

the contact points on the two bodiespa and pb respectively, wherepa(t0) = pb(t0) = p.

Let ṗa(t0) and ṗb(t0) be the velocity ofpa and pb at time t0. The velocity values are

defined as

ṗa(t0) = va(t0)+ωa(t0)× (pa(t0)−xa(t0)) (A.15)

and

ṗb(t0) = vb(t0)+ωb(t0)× (pb(t0)−xb(t0)) (A.16)

In order to determine the type of contact taking place, the relative velocity of the

contact points must be calculated. Letvrel represent the relative velocity ofpa and pb

defined as

vrel = n̂(t0)• (ṗa(t0)− ṗb(t0)) (A.17)

Three different types of contacts may exist between two bodies depending on the

relative velocity of the contact points:

• Colliding contact: points are moving towards each other signified by

vrel < −tolerance

.
3A typical collision might produce multiple contact points between the two bodies. Linear methods for

resolving multiple contact point simultaneously will be discussed

APPENDIX A. RIGID BODY ARTICULATION 164

• Separating contact: points are moving away from each other signified by

vrel > tolerance,

hence no further action is required.

• Resting contact: points are at rest relative to each other signified by

|vrel|<= tolerance.

A.3.2 Colliding Contacts

We start by considering a frictionless collision along the line connecting the centers of

mass. LetJ be the linear impulse involved in the collision,v+ is the post-collision veloc-

ity, while v− is the pre-collision velocity.J is represented as [18]

J = m(v+−v−) (A.18)

The coefficient of restitutione if represented as

e= −(va+−vb+)/(va−−vb−) (A.19)

Since the impulse force acts on both bodies with the same magnitude yet opposite

directions, the following three equations are available

J = ma(va+−va−)
−J = mb(vb+ −vb−)
e= −(va+−vb+)/(va−−vb−)

(A.20)

Let vrel = (va−− vb−). Given the three unknownsva+, vb+ andJ, we can rearrange

the three equations to achieve the following formula forJ.

J = −vrel(e+1)/(1/ma +1/mb) (A.21)

Since most collisions are not frictionless and are not alongthe line connecting the

centers of mass, we expand our discussion to cover the angular impulse force as well.

Givenvrel as the relative velocity along the line of contact, andn as the normal vector at

the contact point pointing out from the first body,ra is the vector from the center of mass

of the first body to the pointpa andrb is the vector from the center of mass of the second

body to the pointpb, the formula forJ taking into accounts both linear and angular forces

is formulated as follows:

APPENDIX A. RIGID BODY ARTICULATION 165

J =
−vrel(e+1)

1/ma +1/mb+n · [(ra×n)/Ia]× ra +n · [(rb×n)/Ib]× ra
(A.22)

Given the formula forJ, we can calculate the post-collision linear and angular veloc-

ities of the bodies involved. The linear velocities are calculated as

va+ = va− +(Jn)/ma
vb+ = vb− +(−Jn)/mb

(A.23)

The angular velocities are calculated as

ωa+ = ωa− +(ra×Jn)/Ia
ωb+ = ωb− +(rb ×−Jn)/Ib

(A.24)

A.3.3 Friction

Most collisions do not demonstrate direct impact between the colliding bodies, so as the

bodies come into contact, frictional forces are exerted on the bodies in a direction that is

tangential to the contacting surfaces. The frictional forces will contribute to a change in

both the linear and angular velocities of both bodies. The tangential forces produced by

friction is proportional to the normal force exerted on the contact surface. ConsiderFf as

the friction force andFn as the force normal to the surface, the coefficient of friction µ is

defined as

µ= Ff /Fn

.

In addition to changing the linear velocity of the body, frictional forces also change

the angular velocity by creating a torque on the bodies aboutthe center of gravity. The

impulse force due to friction is given by

Impulse= I/(µr)(ω+−ω−) (A.25)

Finally, taking friction into consideration, the change inlinear velocity is given by

va+ = va− +(Jn+(µJ)t)/ma

vb+ = vb− +(Jn+µJ)t)/mb
(A.26)

and the change in angular velocities of the two colliding bodies is given by

ωa+ = ωa− +(ra× (Jn+(µJ)t))/Ia

ωb+ = ωb− +(rb× (−Jn+(µJ)t))/Ib
(A.27)

wheret is a unit vector tangent to the collision surfaces.

APPENDIX A. RIGID BODY ARTICULATION 166

A.3.4 Resting Contacts

Calculating the response forces for resting contacts is considerably more complex than

the calculations for colliding contacts. The main reason for the complexity lies in the

fact that all contact forces have to be calculated simultaniously as one contact force might

influence the resolution at another point. The same case alsoapplies when multiple bodies

are involved in the collision yielding multiple contact points. Figure A.4 shows four

rigid bodies producing six contact points. The collision normals, and the centers of mass

are also shown in the figure. If all points are not processed simultaniously, a deadlock

situation can be reached where the response engine halts as one of the bodies oscilates

back and forth being pushed by one contact point resolution and then the other.

Figure A.4: Four rigid bodies producing six contact points.

The simultanious processing of multiple contact points canbe formulated as a Linear

Complementarity Problem (LCP), which revolves around finding a solution to a linear

system satisfying specific inequality constraints. Given the n× n matrix M and the n-

vectorq, an LCP presents the problems of calculating values for the variablesz1,z2, ..,zn

andw1,w2, ..,wn such that [26]

w1

w2
...

wn

= M

z1

z2
...

zn

+q (A.28)

The following list presents the steps to be followed for handling collisions producing

multiple contact points[33]:

APPENDIX A. RIGID BODY ARTICULATION 167

1. The collision detection engine produces data for all contact points present at the

current state of the system.

2. The contact points are pre-processed for formulation as aLinear Complementarity

Problem.

3. The LCP solver produces a system solution guaranteeing the no-penetration con-

straint.

4. The post-collision velocities are calculated based on the results of the LCP solver.

5. The differential equation solver calculates the new state vector for each body within

the simulation.

6. Repeat for the next timestep.

A.4 Joint Constraints

In order to create a complex articulated structure out of rigid-body components, a con-

nection mechanism is needed that allows for the creation of Joints that hold the bodies

together through the enforcing of different types of constraints. Similar to the impulses

generated to enforce non-penetration constraints, impulses can be introduced to limit the

relative motion of bodies. Schmitt [115] introduces a method for conserving joint con-

straints through the application of continous position andorientation correcting pulses.

Schmitt’s algorithm offers a simpler approach to conserving constraints, as it does not

require solutions to complex differencial equations (Figure A.5).

Figure A.5: Joint correction forces to conserve joint constraints.

APPENDIX A. RIGID BODY ARTICULATION 168

Given the two bodiesA andB connected via a ball-and-socket joint. The pointspa and

pb represents the anchor points on the two bodies, and the jointconstraint is to keep the

two anchor points within tolerance distance of each other. As the two points slide apart

due to forces being exerted on the bodies, a corrective impulse force has to be applied to

pull the bodies back together.

The impulse forces are calculated to reduce the distance betweenpa and pb to zero

at time t + h. The velocity changes of A and B must equal the separating distanced

divided by the time step size h. The corrective impulses can be computed accordingly and

applied to the system at timet in order to achieve a consistent system at timet + h. For

multiple joints, the process must repeat iteratively untilall constraints within the system

are satisfied.

In addition to the method presented, Lagrange multipliers could also be used to solve

for the motion of bodies connected by joints. A discussion ofsuch a solution is presented

by Baker [119].

Figure A.6: Hinge as well as ball-and-socket joint constraints connecting the two bodies
A and B.

In order to create the desired articulated structures, the simulation engine, at a mini-

APPENDIX A. RIGID BODY ARTICULATION 169

mum, must have support for two different types of Joints. Thefirst is a hinge joint offering

a single degree of freedom about the hinge axis, and the second is a ball-and-socket joint

offering three degrees of freedom. Both types of joints are shown in figure A.6[124]. The

different joints may be used to simulate different connection types within the structure.

For example, in the simulation of a biped robot, a hinge jointmay be used to simulate

the elbow and knee, while a ball-and-socket joint may be usedto simulate the shoulder or

hip.

The efficient utilization of joint constraints would allow for the simulation of any type

of articulated structure. Ropes and fabric may be simulatedthrough the placement of

proper joints and relaxing the corrective impulses to simulate spring-like behavior at the

contact points producing stretching. The simulation of fluids is also feasible using the

same system by structuring a mesh of bodies connected by ball-and-socket joints and

formulating a model governing the different fluid forces andparticle motion. Cohesion

forces may also be simulated with the inclusion of breaking threshholds at which the

particles lose their connectivity.

Appendix B

AGENT AWARENESS AND PLANNING

B.1 Situation Awareness

Situation awareness revolves around the accurate perception of both the internal and ex-

ternal environments of an agent and understanding the valueof the perceived information

presently as well as for future planning. The notion offorward thinkingallows a robotic

agent to prepare for future events based on proactive and anticipatory actions [125]. Being

fully aware of the current state is closely coupled with an agent’s ability to create goals

and execute goal-based strategies. An agent operating in a real-world environment will

be compelled to autonomously create and follow its own goalsas the environment could

neither be modelled correctly nor completely in advance [98]. Thus, the dynamic cre-

ation, re-prioritization and effective management of goals become an essential element in

robotic control. The more aware an agent is of its environment, the more it can effectively

manage its goal vector. Two main types of goals motivate robot behavior:

• Reactive goalsare created in response to changes in the belief system relating to

the environment. In essence, such goals are created or destroyed based on environ-

mental changes that take place, and they are the basic mechanisms behind belief,

desire, and intention (BDI) principles [43].

• Proactive goalsare created in relation to future prediction of the environment and

the effect of such changes on the agent. For example, an agentsensing a movement

towards a state of being off-balance will proactively attempt to correct the situation

by planning and applying corrective measures.

As the level of complexity of the agent and the environment increases, the associated

interactivity also increases making the accurate perception of the current situation more

difficult. Consequently, the creation of reactive or proactive goals in real-time become a

significant challenge. Several first and second order logical frameworks have been created

to formalize the expression of states in a general sense. In the following sections, we

will discuss existing situation and state management frameworks identifying the main

components, advantages, and disadvantages of each.

170

APPENDIX B. AGENT AWARENESS AND PLANNING 171

B.2 Situation Calculus

Situation calculus (SC) was introduced by McCarthy and Hayes [86] as a logical formal-

ism for the structured representation of information relating to dynamic environments.

Several versions of the situational calculus have been released over the years, but the core

principles remain the same. A situation may represent a snapshot of the world at some

instant in time [87] or a history of all states and events leading up to an instant in time

[111]. Either of the two approaches acknowledges the impossibility of representing a sit-

uation in its entirety. Hence, a situation is an approximation that aims to offer valuable

information about the state of the world. The following are some of the key features of

the situation calculus as described by Reiter [111]:

• SC is a second order logic formal language intended to model the logical structures

as well as the changes that take place in dynamic worlds.

• SC currently views a situation as a history of actions leading to a particular situation

starting at the initial situationS0.

• Fluents are used to describe the state of the world in each situation.

• Actions are objects of the domain of discourse that prompt changes to the state of

world objects.

B.2.1 SC Semantics

Situation calculus, as defined by Levesque, Pirri and Reiter[81] uses the usual definitions

of the standard alphabet of logical symbols, including∀, ¬ and∃. The following alphabet

is also utilized:

• The predicate symboldo(action,situation) denotes the resulting situation after per-

forming a specific action. The predicatedo(a,s) denotes the state produced after

performing actiona in situations.

• The predicate symbol⊏ (situation,situation) defines the sequencing of situation

occurrence. For example,a ⊏ b means that a occurred before b; i.e. a belongs to

the history of b.

• The predicate symbolPoss(action,situation) denotes the executability of an action

in a particular situation.Poss(a,s) signifies the possibility of performing actiona

APPENDIX B. AGENT AWARENESS AND PLANNING 172

in situations. The statement

Poss(step(a),s) ≡U pright(a,s)∧Balanced(a,s)

denotes that the ability to step is dependant on being upright and balanced.

In addition to the alphabet mentioned, action functions arealso utilized to define ac-

tions on objects in a particular situation. Relational and functional fluents are also in-

cluded and will be explained in the next section.

B.2.2 Fluents

A fluent represents a system entity whose value may be alteredover time. Fluents may

represent numerical parameters whose value is subject to variation, or a proposition whose

truth value might be changed as the system transitions from one situation to another. Flu-

ents are often treated as functions to represent dynamic facts about certain objects within

the environment. For example, given the two fluentsf andg relating to the environment

objectx

f (x,s)∧g(x,s)

asserts the status ofx in relation to bothf andg at situations.

Fluents are always expressed in relation to a particular situation. Several methods may

be used to describe the association between a fluent and a situation, so given the operation

op

(f op g)(s) = f (s) op g(s)

In certain instances, the situation specification may be suppressed in fluent expression

producing a fluent that could be applied to any relevant situation. For example, given the

fluenteqdenoting the following equality,

∀x,y,z(eq(x,y)∧eq(y,z) → eq(x,z)),

we dan deduce that the inequelity applies to any implicit situations, and the given transi-

tive law holds.

Action fluentsare utilized to define situation specific relationships among objects. For

example,occupied(x,s) signifies that the objectx is occupied in situations. On the other

hand,functional fluentsare used to denote situation specific functions, likesize(x,s) or

value(y,s) for example.

APPENDIX B. AGENT AWARENESS AND PLANNING 173

B.2.3 Effect and Successor Axioms

Given the agenta, the situations, and the actionσ, the fluentresult(a,σ,s) represents

the resultant situation aftera executes actionσ in s. Actions may have effects on sys-

tem fluents and effect axioms are used to model such effects. The following example

demonstrates the structuring of effect axioms.

Given the two boxesa andb and the itemi, we use the following fluent to describe

the location ofi as well as the status of boxb:

Empty(b,s) boxb is vacant in situations

InBox(i,b,s) itemi is in boxb in situations.

The following fluent is used to describe the transition ofi from one box to another:

Move(i,b) move itemi to boxb.

The resultant state after applying theMove(i,b) action in situations is given by

Result(Move(i,b),s)

and the effect axiom forMove(i,b) is given by

∀s, i,b, InBox(i,b,Result(Move(i,b),s)))

As we add more effect axioms for different actions within theenvironment, we start to

realize that effect axioms allows for describing the effects of actions but not for describing

the parts of the system that remain unchanged. For example, using the effect axiom listed

above, movingi from box A to box B would cause InBox(i,B,Result(Move(i,B),s)) to

hold, however, given the existence of another boxC, the effect axiom does not convey

any information about the value of fluents in regards toC. This inability to handle non-

effects is called theframe problem.

The most efficient solution to the frame problem revolves around replacing the effect

axioms with a single successor state axiom for each fluent. For example, the successor

axiom forInBox(i,b,s) is as follows:

∀s,a, i,b(InBox(i,b,Result(a,s))↔

((InBox(i,b,s)∧¬∃a= (Move(i,b0,s)∧b 6= b0))∨(¬InBox(i,b,s)∧∃a= Move(i,b,s)))

The previous axiom signifies that itemi would be classified as being in boxb in

situationResult(a,s) if and only if either of the following takes place:

APPENDIX B. AGENT AWARENESS AND PLANNING 174

• Item i was already in boxb in situations and was not moved elsewhere, or

• Item i was not in boxb in situationsand was then moved tob.

Using successor axioms allows for specifying the values of fluents in relation to all

previous actions that might affect them. In addition, it removes the requirement for having

to specify the values for all fluents, including those who have not changed. The integrity

of the system is increased in that manner as the possibility of omitting the inclusion of

one or more axioms does exist.

Once the axiomization of the system is complete, an agent should be able to deduce

the resultant state reached after executing a series of actions. Planning is also feasible,

as the agent is able to strategize a series of actions that would result in a particular sit-

uation. However, there are some limitations to the situation calculus that makes using

it in dynamic robotic controller environments difficult. For example, situation calculus,

as presented by McCarthy, does not include constructs for specifying concurrent actions

or actions of a continuous nature. In addition, actions representing complex behaviors

as well as their resultant states would be quite difficult to implement using the given

methodologies.

B.3 Fluent Calculus

Fluent calculus was created with the purpose of providing better mechanisms for spec-

ifying non-effects of actions as well as the ability to inferthese non-effects [129]. In

Fluent calculus, situations are considered as representations of states. The inferential

frame problem is addressed by utilizing universal state-update axioms that specify how

an action modifies a state. This approach is based on the reification of primitive fluents

into successor state axioms. A fully mechanical method for deriving state update axioms

from an initial arbitrary grouping of effect axioms is presented [130]. Fluent calculus uti-

lizes the key idea of combining multiple effect axioms into asingle one. The result would

be a more complex axiom that still only specifies effects, yetit would contain sufficient

information regarding objects within the system not affected by an action.

Given the fluentF(~x) and a finite set of actionsa relevant toF(~x), γ+
F (~x,a,s) would

specify all circumstances that would causeF(~x) to become true in s. Similarly,γ−F (~x,a,s)

would describe all circumstances causingF(~x) to become false. A general form successor

state axiom is given to describe the dependence of the value of F on its value in the

previous situation as well as the effect of the action performed.

APPENDIX B. AGENT AWARENESS AND PLANNING 175

The following successor state axiom describes the effect ofγ+ andγ− onF :

F(~x,Do(a,s)) ≡ γ+
F (~x,a,s)∨ [F(~x,s)∧¬γ−F (~x,a,s)]

Although this approach effectively addresses the representational frame problem, ad-

dressing the inferential aspect requires an alternative form of successor state axiom where

actions are the main components of the system and not fluents.By reversing the repre-

sentational model, we may specify the affect of each action on the values of fluents. Let

A(~x) represent an action of interest. We may use the formulaγ+
A (~x, f ,s) to specify condi-

tions such thatf is a positive effect of performingA(~x). Similarly, γ−A (~x, f ,s) represents

conditions such thatf is a negative effect of performingA(~x).

The complete account of fluents that hold in situations is given by

holds(f ,Do(a(~x),s)) ≡ γ+
A (~x, f ,s)∨ [holds(f ,s)∧¬γ−A(~x, f ,s)]

B.3.1 Mechanical Axiomization

Automating the transition from effect axioms to successor state axioms would be quite

beneficial. This would allow for the system logic to deduce the non-effects of actions

utilizing known effects. The mechanical axiomization process offered by the fluent cal-

culus operates under the assumption that the effect axioms given constitute a complete set

of effects. The presence of indirect effects gives rise to the Ramification Problem. Such

indirect effects exist through environment state constraints which impose certain circum-

stances that are not directly specified. Causal propagation[128] approaches are the most

general approaches used to address the Ramification Problem[130].

B.4 Probabilistic Situation Calculus

Probabilistic Situation Calculus (PSC) was created to handle dynamic knowledge relating

to worlds in which actions have uncertain results [85]. Whenthe outcome of a particular

action is not certain, the transition from one state to another goes beyond the capabili-

ties of current representations of the situation calculus,as such representations only deal

with discrete state transitions where the effects of actions are known. PSC operates un-

der the assumption that, in a realistic environment, the result of a particular action may

only be probabilistically approximated, hence, this framework was created to handle the

complexity of such probabilistic distributions. This taskis accomplished through the in-

clusionprobabilistic temporal projection, which revolves around the prediction of world

changes that might take place as a group of actions, or a plan,is put into effect [89].

APPENDIX B. AGENT AWARENESS AND PLANNING 176

PSC deviates from traditional situation calculus methods for specifying action pre-

conditions by partitioning them into the following two components:

• Preconditions for inputs, which are analogous to the situation calculus precondi-

tions.

• Probability distribution for the reactions resulting fromthe processing of an input.

B.4.1 Induction Axioms

Several foundational axioms are used in PSC based on the induction axioms introduced

by reiter [112]. The first is an existence axiom which states that the initial situationS0 is

in the path for reaching any other situation. The existence axiom is stated as follows:

(∀ϕ).ϕ(S0)∧ (∀a,s)[ϕ(s) ⊃ ϕ(do(a,s))] ⊃ (∀s)ϕ(s). (B.1)

This axiom is comparable to the induction axiom for natural numbers:

(∀ϕ).ϕ(0)∧ (∀x)[ϕ(x) ⊃ ϕ(succ(x))] ⊃ (∀x)ϕ(x).

The next axiom relates to the reachability of situations from other situations. SinceS0

is the initial state, it does not have any other state in its history, hence

(∀s)¬s⊏ S0. (B.2)

The⊏ operator is used for state ordering. The interpretation ofs⊏ s′ is that states

is in the history of states′, which means that states′ could be reached from states by

applying some set of actions.

The name uniqueness axiom is stated as:

do(a1,s1) = do(a2,s2) ⊃ a1 = a2∧s1 = s2, (B.3)

which means that each action applied in a situation must havea unique name identifier.

PSC also introduces thelegal predicate which identifies the status of situations after

the execution of actions that are not possible in a particular situation. If an illegal action

is executed, the holding value of fluents remains the same. The axiom is presented as

follows:

¬legal(do(a,s))⊃ (∀ f)holds(f ,s) ≡ holds(f ,do(a,s)). (B.4)

APPENDIX B. AGENT AWARENESS AND PLANNING 177

B.4.2 Cumulative Distribution

In order to operate over a domain of uncertain reactions, a cumulative distribution func-

tion, denoted as c(i,s), is used, wherei represents the input in situations. The following

cumulative distribution axioms are used:

lim
x→+∞

c(i,s)(x) = 1, (B.5)

lim
x→−∞

c(i,s)(x) = 0, (B.6)

x < y⊃ c(i,s)(x) ≤ c(i,s)(y), (B.7)

lim
y→x+

c(i,s)(y) = c(i,s)(x). (B.8)

The probability that the fluentf holds after a particular inputi is given in situations

is given by the predicateprob where

prob(f , i,s) =
∫ +∞

−∞
ϕ(holds(f ,do(〈i,x〉 ,s)))c(i,s)(dx). (B.9)

whereϕ(x) = 1 if x is true, andϕ(x) = 0 if x is f alse.

The PSC also includes support for cases where multiple inputs contribute to a particu-

lar reaction. The formulation is based on aRandomly Reactive Automata. The reasoning

mechanism is extended to allow for multivariate reactions by extending the language of

the situation calculus.

B.4.3 Expansion of the Situation Calculus

The frameworks presented in this chapter for the formal description of situations offer

methodologies based on first and second order logic. However, in their current state, none

of the frameworks presented address the complexities of autonomous agent design, spe-

cially in the presence of articulated structure control. The situation calculus operates on a

system of deterministic actions and states where the consequences of events and actions

are well defined. Fluent calculus, as well as event calculus,follow the same general struc-

ture as that of the situation calculus with the addition of constructs for the description of

APPENDIX B. AGENT AWARENESS AND PLANNING 178

non-effects. Probabilistic situation calculus introduces the element of system uncertainty

yet only in relation to the effects of well defined system inputs.

A formal state determination system for autonomous articulated agents must include

the ability to describe the dynamic and uncertain nature of actions, reactions as well as

state memberships. In order to expand current methodologies to allow for the compre-

hensive depiction of agent state, the following elements must be incorporated:

• Determination of the agent’s internal state vector described by the articulation status

at a given moment in time. The determination system must be designed to handle

agent parameters whose values are presented on a continuousscale.

• Determination of the agent’s external state vector described by the environment

state vector as well as the interactivity vector between theagent and the environ-

ment. The determination system must be designed to handle environment parame-

ters whose values are presented on a continuous scale.

• The management of agent goals based on current system status. The agent’s goal

vector will be constantly changing depending on the currentstatus of the agent as

well as the priority values of long-term and short-term goals, so the management

system must incorporate support for the dynamic re-prioritization of goals.

Due to the dynamic nature of system interactivity, an agent can be described as being

in multiple states at the same moment in time. For example, anagent will never be

in an absolute state of being balanced or an absolute state ofbeing off-balance. State

membership levels must be incorporated to describe the belongingness of the agent to

different simultaneous states.

B.5 Rational Agents

The efficient control of robotic agents requires a level of rational behavior where knowl-

edge of the environment maximizes the agent’s chances to achieve successful results. A

rational agent would be required to maximize its performance measures by using its past

experiences, current information available, as well as current actions available in the cur-

rent situation. The design of an autonomous robotic agent that relies on rational decision

making requires the existence of a framework for the modeling of agent perceptions, as

well as short-term and long-term goals.

APPENDIX B. AGENT AWARENESS AND PLANNING 179

The Belief-Desire-Intention (BDI) model was developed by Bratman [19] as a frame-

work for practical reasoning. The BDI model has come to be possibly the best known

and most studied platform for practical reasoning agents [44]. As shown in Figure B.1, A

BDI system consists of the following main units:

• Beliefs: The agent belief system revolves around its perception of the environment

and itself at a given point in time. Beliefs represent the agent’s collective knowl-

edge of the world achieved through sensors, inputs and possibly deductive reason-

ing. An agent could have different levels of certainty abouteach of its beliefs.

As beliefs possibly represent imperfect information, adherence to belief logics is

essential even though the computational representation may not be logical [44].

• Desires: Agent goals are represented as desires for achieving certain states or tasks.

Desires may be immediate representing short-term goals, orthey could represent

a structured agenda including long-term goals. Desires mayhave priority levels

attached to them to signify the urgency of the associated goals.

• Intentions: Once an agent commits to a particular goal, the goal becomesan inten-

tion that the agent is working towards materializing. An intelligent system would

weigh the priorities of goals on the agenda then commit to goals that seem appro-

priate at a given point in time.

• Actions: An agent must utilize feasible actions in order to achieve goals it has

committed to. The feasibility of actions differs from one situation to the next, so a

dynamic feasibility evaluation must be performed to decideon the most appropriate

plan of action that would constitute the most efficient method for achieving the goal.

An agent would also be required to handle the causality associated with the execu-

tion of actions. In an uncertain environment, the outcome ofactions may not be fully

determined until an action, or part of it, has taken place. Hence, mechanisms are needed

for handling the error associated with the execution of actions. Furthermore, intelligent

monitoring is needed in order to compensate for error buildup while the action is being

executed by possibly making dynamic changes to the action.

An essential part of effective planning is the ability to re-plan when necessary. Al-

though a particular plan of action might be the most appropriate at a particular point in

time, it might not be a time step later. The commitment to a particular action will need

to be dynamic within itself. Although a belief might exist that a specific action would

APPENDIX B. AGENT AWARENESS AND PLANNING 180

Figure B.1: The belief-desire-intention model.

yield a specific result, the system offers no guarantee of theresultant state of any ac-

tion. An agent should be able to detect when an intended result seems to be unachievable

given the current action plan. Re-planning could then take place taking into consideration

knowledge of the previous failure in order to create an alternative course of action.

B.5.1 BDI Relationships

Rao and Georgeff [108] describe the relationship between beliefs, desires and intentions

as that of consistency. An agent should have conviction thata goal is achievable in order to

classify it as a goal. This property is calledrealismas described by Cohen and Levesque

[27]. The world consistency requirement is stated as follows:

∀b∃g,g⊆ b
∀g∃i, i ⊆ g

This means that given the belief-accessible world setb, a goal-accessible world setg

must exist that is a sub-world ofb at timet. Similarly, for each goal-accessible world set

g, an intention-accessible world seti must exist that is a sub-world ofg at timet. The fact

that each belief-accessible world must have an associated goal-accessible world does not

imply that the reverse must also hold. Belief in the inevitability of a particular fact need

not translate to a goal to achieve that fact [108].

APPENDIX B. AGENT AWARENESS AND PLANNING 181

Given the desired and potential side-effects, as shown in Figure B.2, an agent believes

that by executing any of the two actionsa1 or a2, d will be fulfilled with the potential

occurrence ofs as well. Actiona3 is an alternate course of action causing the non-

fulfillment of d guaranteeing also thats will not occur. The figure shows two of the

possible goal-accessible worldsg1 andg2 associated with the belief-accessible worldb1.

The two intention-accessible worldsi1 andi2 associated withg1 andg2 are also shown.

Figure B.2: The relationship between belief, goal, and intention-accessible worlds. The
symbolsa1, a2, anda3 represent three possible actions. The symbold represents a par-
ticular desire, whiles represents a possible side-effect.

The Computation Tree Logic (CTL), presented by Emerson and Srinivasan [35], is a

propositional branching-time logic utilized for program reasoning. Here, we follow the

CTL utilization as extended by Rao and Georgeff [108] for thepurpose of describing

a first-order variant of the logic. The following sections present the constructs defined

in [108] for describing the relationships between world entities as well as for system

axiomization.

APPENDIX B. AGENT AWARENESS AND PLANNING 182

B.5.2 World Semantics

World semantics are presented using the following elements:

• W is a set of worlds.

• E is a set of primitive events that could take place in a particular world.

• T is a set of time points to be related to the existence of worldson the time line.

• τ defines a binary relation between elements and time points.

• B, G andI represent mapping between the current situation and the agent’s set of

beliefs, goals and intentions respectively.

• Rw
t is used to denote the set of worlds accessible fromw at timet.

• U defines the universe of discourse, andφ defines the mapping of entities inU for

a given world at a specific point in time.

• Each worldw is represented by the tuple〈Tw,τw,Sw,Fw〉, whereTw is a set of time

points such thatTw ⊆ T, andτw is a subset ofτ restricted to time points inTw. Sw

represents successful occurrence of events between adjacent time points, whileFw

represents failure of those events.

• The sub-worldw′ is defined as a sub-tree of the worldw denoted byw′ ⊑ w.

In addition to the elements listed, the modal operatorsBEL, GOALandINTENDare

used creating a first-order logic framework for the formal representation of world states.

The formulation given is later used to define system axiomization.

B.5.3 Semantics of Events

Events include actions used by an agent to achieve goals. Events transform the agent

environment along the time line according to the time point set T. The evente might or

might not be successfully executed denoted bysucceeded(e) or f ailed(e) respectively.

The predicatedone(e) represents an attempt at executing evente. The three predicates

are defined as follows:

APPENDIX B. AGENT AWARENESS AND PLANNING 183

succeeded(e) iff ∃t0,Sw(t0, t1) = e

f ailed(e) iff ∃t0,Fw(t0, t1) = e

done(e) ≡ succeeded(e)∨ f ailed(e)

B.5.4 BDI Compatibility

Since in order for a goal to exist, it must stem from an existing belief, each identified

goal must have an associated belief-accessible world leading to it. This compatibility is

formalized using the following axiom:

GOAL(α) ⊃ BEL(α).

The same compatibility applies for goals leading to intentions. Hence, each identified

intention must stem from a goal-accessible world. The axiomof goal-intention compati-

bility is given by:

INTEND(α) ⊃ GOAL(α).

In order for the entire system to progress forward, intentions must be transformed into

actions that may or may not succeed. Such transformation is signified by a commitment

on the part of an agent to a particular intention. The axiom ofintention to action is given

by:

INTEND(does(e)) ⊃ does(e).

In addition to the BDI formalization discussed , the framework also offers catego-

rization of agent commitment strategies as it relates to rational agents. Although beyond

the scope of this overview, the framework also offers additional axioms, propositions and

theorems that assist in describing the inevitability of actions and side effects as well as

the success or failure of actions attempted by an agent. For amore detailed discussion of

the framework, refer to [108].

B.6 Summary

In this chapter, we discussed several platforms for the description of agent situations as

well as the relationships between different agent components. We have also described

APPENDIX B. AGENT AWARENESS AND PLANNING 184

the Rao and Georgeff [108] framework for the formal representation of the belief-desire-

intention model. The framework offers a significant logicalframework for formulating

the transition of knowledge about the agent’s environment into actions that change the

environment.

Although the logical foundations of the situation calculusas well as BDI are quite

significant, more work will still have to be done to bridge thegap between theory and

applications [109]. The situation calculus does not provide the constructs needed for

the dynamic control of articulated structures, while a significant criticism of the BDI

model is that it is not appropriate for modeling various types of behaviors. For example,

both frameworks do not include constructs for building systems that rely on learning and

adaptation in their behavioral patterns. This is a crucial,yet missing, component needed

for the creation of autonomous robotic controllers.

BIBLIOGRAPHY

[1] Charles W. Anderson. Strategy Learning with MultilayerConnectionist Representations.Pro-
ceedings of the Fourth International Workshop on Machine Learning , pages 103-114, 1987.

[2] F. Bacchus.Representing and Reasoning with Probabilistic Knowledge.MIT Press, Cam-
bridge, MA , 1990.

[3] F. Bacchus, J. Halpern, and H. Levesque. Reasoning AboutNoisy Sensors and effectors in
the Situation Calculus.Artiffcial Intelligence, pages 171-208, 1999.

[4] W. Banzhaf, P. Nordin, R. E. Keller and F. D. Francone.Genetic Programming: An Intro-
duction: On the Automatic Evolution of Computer Programs and Its Applications.Morgan
Kaufman , 1998.

[5] D. Baraff. Analytical methods for dynamic simulation ofnonpenetrating rigid bodies.Pro-
ceedings of SIGGRAPH 89, 23, 3, 223-232, 1989.

[6] D. Baraff. Curved surfaces and coherence for non-penetrating rigid body simulation.Pro-
ceedings of SIGGRAPH 90, 24, 4, 19-28, 1990.

[7] D. Baraff. Coping with friction for non-penetrating rigid body simulation.Proceedings of
SIGGRAPH 91, 25, 4, 31-40, 1991.

[8] D. Baraff. Issues in computing contact forces for non-penetrating rigid bodies.Algorithmica
, 10, 292-352, 1993.

[9] D. Baraff. Fast contact force computation for nonpenetrating rigid bodies.Proceedings of
SIGGRAPH 94, 23-34, 1994.

[10] D. Baraff. Interactive simulation of solid rigid bodies. IEEE Compututer Graphics and
Applications, 15, 3, 63-75, 1995.

[11] D. Baraff. Physically Based Modeling.ACM SIGGRAPH 2001 Course Notes, 2001.

[12] John Bares, Martial Hebert, Takeo Kanade, Eric Krotkov, Tom Mitchell and Reid Simmons.
Ambler: An Autonomous Rover for Planetary Exploration.IEEE Computer Society - Com-
puter, pages 18-26, June 1989.

[13] A. G. Barto, R. S. Sutton and C. W. Anderson. Neurolike Elements that Can Solve Difficult
Learning Control Problems.IEEE Transactions on Systems, Man, and Cybernetics, 13, pages
835-846, 1983.

[14] Forrest H. Bennett, III and Eleanor G. Rieffel. Design of Decentralized Controllers for
Self-Reconfigurable Modular Robots Using Genetic Programming. The Second NASA/DoD
Workshop on Evolvable Hardware (EH’00), page 43, July 2000.

[15] Gino Van Den Bergen.Collision Detection in Interactive 3D Environments. Morgan Kauf-
mann Publishers, San Francisco, CA 94111, 2004.

185

BIBLIOGRAPHY 186

[16] Tobias Blickle and Lothar Thiele. A Mathematical Analysis of Tournament Selection.Pro-
ceedings of the 6th International Conference (ICGA95), 1995.

[17] Ulrich Bodenhofer.Genetic Algorithms: Theory and Applications.Lecture Notes - Third
Edition, 2003.

[18] David M. Bourg. Physics for Game Developers. O’Reilly and Associates, Inc.,Sabastopol,
CA 95472, 2002.

[19] M. E. Bratman Intention, Plans and Practical Reason.Harvard University Press: Cam-
bridge, 1987.

[20] F. Brazier, B. Dunin-Keplicz, J. Treur, R. Verbrugge. Modelling Internal Dynamic Behaviour
of BDI Agents.Proceedings of the Third International Workshop on Formal Models of Agents,
MODELAGE’97, 1997.

[21] C. Breazeal and B. Scassellati Challenges in Building Robots That Imitate People.Imitation
in Animals and Artifacts, MIT Press, 2001.

[22] R. Brooks. Toward a Practice of Autonomous Systems.Proceedings of the First European
Conference on Artificial Life, 1992.

[23] G.S. Bullock. Co-evolutionary design: Implications for evolutionary robotics.Technical
Report CSRP384, University of Sussex School of Cognitive and Computing Sciences., 1995.

[24] A. Acosta-Calderon and H. Hu. Robotic Societies: Elements of Learning by Imitation.
Proceedings of of the 21st International Conference on Applied Informatics, pages 315-320,
2003.

[25] Y.U. Cao, A.S. Fukunaga, A.B. Kahng and F. Meng. Cooperative mobile robotics: an-
tecedents and directions. International Conference on Intelligent Robots and Systems , Vol-
ume 1, pages 226-234, August 1995.

[26] Michael B. Cline. Rigid Body Simulation with Contact and Constraints.Masters Thesis,
The University of British Columbia , 2002

[27] P. R. Cohen and H. J. Levesque. Persistence, Intention and Commitment.Proceedings of the
1986 Workshop on Reasoning About Actions and Plans, pages 297-340, 1987.

[28] K. Dautenhan and C. L. Nehaniv.Imitation in Animals and ArtifactsThe MIT Press, Cam-
bridge, MA , 2002

[29] Michael R.W. Dawson. From Embodied Cognitive Science To Synthetic Psychology.First
IEEE International Conference on Cognitive Informatics (ICCI’02) , page 13, August 2002.

[30] Judith Devaney, John Hagedorn, Olivier Nicolas, GaganGarg, Aurelien Samson and Martial
Michel. A Genetic Programming Ecosystem.15th International Parallel and Distributed
Processing Symposium (IPDPS’01), page 3013b, April 2001.

[31] G. Dudek, M. Jenkin, E. Milios and W. Wilkes. Experiments in Sensing and Communication
for Robot Convoy Navigation.Proceedings of the International Conference on Intelligent
Robots and Systems (IROS95), pages 268-273, 2004.

BIBLIOGRAPHY 187

[32] Roman Durikovic and Katsuhiro Numata. Human Hand Modelbased on Rigid Body Dynam-
ics. Eighth International Conference on Information Visualisation (IV’04) , pages 853-857,
July 2004.

[33] David H. Eberly.Game Physics. Morgan Kaufmann Publishers, San Francisco, CA 94111 ,
2004.

[34] A.E. Aiben and J.E. Smith.Introduction to Evolutionary Computing Theory. Springer, New
York, 10013 , 2003

[35] E. A. Emerson and J. Srinivasan. Branching Time Temporal Logic. Branching Time and
Partial Order in Logics and MOdels for Concurrency, pages 123-172, 1989.

[36] M. R. Endsley. Theoretical Underpinnings of SituationAwareness: A Critical Review.Situa-
tion Awareness Analysis and Measurement, Lawrence ErlbaumAssociates, Publishers, Mah-
wah, New Jersey, 2000.

[37] C. Ferreira. Gene Expression Programming: A New Adaptive Algorithm for Solving Prob-
lems.Complex Systems, pages 87-129, 2001.

[38] C. Ferreira. Gene Expression Programming in Problem Solving. Proceedings of the Sixth
Online World Conference on Soft Computing in Industrial Applications , September 10-24,
2001.

[39] D. Floreano, S. Nolfi and F. Mondada. Competitive Co-Evolutionary Robotics: From Theory
to Practice. Proceedings of the Fifth International Conference on Simulation of Adaptive
Behavior, 1998.

[40] D. Floreano and J. Urzelai. Evolutionary Robotics: Coping with Environmental Change.
Proceedings of the Genetic and Evolutionary Computation Conference, 2000.

[41] D. Fogel and Zbigniew Michalwicz.How to Solve It: Modern Heuristics.Springer, , 1994.

[42] Alex Freitas. A Genetic Programming Framework for Two Data Mining Tasks: Classifica-
tion and Generalized Rule Induction.Proceedings of the Second Annual Conference., pages
96-101, 1997.

[43] M. P. Georgeff and A. L. Lansky. Reaktive reasoning and planning.Proceedings of the Sixth
National Conference on Artificial Intelligence, pages 677-81, 1987.

[44] M. P. Georgeff, B. Pell, M. Pollack, M. Tambe and M. Wooldridge. The Belief-Desire-
Intention Model of Agency.Springer Publishers, 1998.

[45] Murdoch Gabbay and James Cheney. A Sequent Calculus forNominal Logic.19th Annual
IEEE Symposium on Logic in Computer Science (LICS’04), pages 139-148, July 2004.

[46] P. Godefroid and S. Khurshid. ExploringVery Large State Spaces Using Genetic Algorithms.
8th Conference on Tools and Algorithms for the Constructionand Analysis of Systems, April
2002.

[47] D. E. Goldberg.Genetic Algorithms in Search, Optimization, and Machine Learning. Ad-
dison Wesley, Reading, MA , 1989.

BIBLIOGRAPHY 188

[48] D. E. Goldberg and K. Deb.A Comparative Analysis of Selection Schemes Used in Genetic
Algorithms.Morgan Kaufmann, San Mateo , pages 69-93, 1991.

[49] J. Y. Halpern. An Analysis of First-order Logics of Probability.. Artificial Intelligence,
pages 311-350, 1990.

[50] I. Harvey. Species Adaptation Genetic Algorithms: theBasis for a Continuing Saga.Pro-
ceedings of the Fourth European Conference on Artificial Life , pages 346-354, 1992.

[51] I. Harvey. The Artificial Evolution of Adaptive Behaviour.PhD Thesis, School of Cognitive
and Computing Sciences, University of Sussex , 1993.

[52] I. Harvey. Evolutionary Robotics and SAGA: the Case forHill Crawling and Rournament
Selection.Artificial Life III, Vol. XVI , pages 299-326, 2004.

[53] I. Harvey, P. Husbands, D. Cliff, A. Thopson and N. Jakobi. Evolutionary Robotics: the
Sussex Approach.Robotics and Autonomous Systems, 1996.

[54] I. Harvey. Cognition is not Cmputation; Evolution is Not Optimization. Artificial Neural
Networks - ICANN97, pages 685-690, 1997.

[55] G. Hayes and J. Demiris A Robot Controller Using Learning by Imitation. Proceedings of
the 2nd International Symposium on Intelligent Robotic Systems, 1994.

[56] F. Herrera and M. Lozano. Two-Loop Real-Coded Genetic Algorithms with Adaptive Con-
trol of Mutation Step Sizes.Technical Report, Dept. of Computer Science and Artificial Intel-
ligence, University of Granada, Spain, 1997.

[57] F. Herrera and M. Lozano. Tackling real-coded genetic algorithms: Operators and tools for
the behavioural analysis.Artificial Intelligence Review, 1998.

[58] Haym Hirsh. Genetic Programming.IEEE Intelligent Systems, pages 74-84, May 2000.

[59] Robert R. Hoffman and David D. Woods. Toward a Theory of Complex and Cognitive
Systems.IEEE Intelligent Systems, pages 76-79, January 2005.

[60] John Holland.Adaptation in Natural and Artificial Systems.University of Michigan Press,
Ann Arbor, USA, 1975.

[61] Dean Hougen, John Fischer, and Deva Johnam. A neural network pole-balancer that learns
and operates on a real robot in real time.In Proceedings of the MLC-COLT Workshop on
Robot Learning, pages 73-80, 1994

[62] P. Husbands, I. Harvey. Evolution Versus Design: Controlling Autonomous Robots.Pro-
ceedings of the Third Annual Conferences on Articial Intelligence, 1992.

[63] P. Husbands, I. Harvey and D. Cliff An Evolutionary Approach to Situated AI.Proceedings
of the 9th Bi-annual Conference of the Society for the Study of Artificial Intelligence and the
Simulation of Behaviour, pages 61-70, 1993.

[64] P. Husbands. Evolving Robot Behaviours with DiffusingGas Networks.Proceedings of
Evorobot, 1998.

BIBLIOGRAPHY 189

[65] N. Jakobi. Half-baked, Ad-Hoc, and Noisy: Minimal Simulations for Evolutionary Robotics.
Proceedings of the Fourth European Conference on ArtificialLife , 1995.

[66] N. Jakobi, P. Husbands and I. Harvey. Noise and the Reality Gap: The Use of Simulation
in Evolutionary Robotics.Proceedings of the Third European Conference on Artificial Life ,
pages 704-720, 1995.

[67] N. Jakobi. Evolutionary Robotics and the Radical Envelope of Noise Hypothesis. COGS
Reprints, University of Sussex, , 1995.

[68] N. Jakobi and M. Quinn. Some problems and a Few Solutionsfor Open-ended Evolutionary
Robotics.Proceedings of Evorob98, 1998.

[69] De Jong, E.D., Dirk Thierens, and Richard A. Watson. Hierarchical Genetic Algorithms.
Proceedings of the 8th International Conference on Parallel Problem Solving from Nature
PPSN-04, pages 232-241, 2004.

[70] John R. Koza.Genetic Programming.MIT Press, Cambridge, MA , 1992.

[71] John R. Koza.Genetic Programming II.MIT Press, Cambridge, MA , 1994.

[72] John R. Koza.Genetic Programming III.Morgan Kauffman, Cambridge, MA , 1999.

[73] John R. Koza and P. Riccardo. A Genetic Programming Tutorial. Stanford University, Stan-
ford, California, 2002.

[74] John R. Koza, Martin A. Keane and Matthew J. Streeter. What’s AI Done for Me Lately?
Genetic Programming’s Human-Competitive Results.IEEE Intelligent Systems, pages 25-31,
May 2003.

[75] Michael D. Kramer and Du Zhang. GAPS: A Genetic Programming System.The Twenty-
Fourth Annual International Computer Software and Applications Conference, page 614,
October 2000.

[76] Robert Laddaga, Mark L. Swinson and Paul Robertson. Seeing Clearly and Moving Forward.
IEEE Intelligent Systems, pages 46-50, November 2000.

[77] Kristof Van Laerhoven, Kofi A. Aidoo and Steven Lowette.Real-time Analysis of Data from
Many Sensors with Neural Networks.Fifth International Symposium on Wearable Computers
(ISWC’01), page 115, October 2001.

[78] Eric Lengyl. Mathematics for 3D Game Programming and Computer Graphics. Charles
River Media, Inc., Hingham, MA 02043, 2002.

[79] Letizia Leonardi, Marco Mamei and Franco Zambonelli. APhysically Grounded Approach
to Coordinate Movements in a Team.22nd International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW ’02), page 373, July 2002.

[80] Henry Leung and Vinay Varadan. System Modeling and Design using Genetic Programming.
First IEEE International Conference on Cognitive Informatics (ICCI’02) , page 88, August
2002.

BIBLIOGRAPHY 190

[81] H. Levesque, F. Pirri, and R. Reiter. Foundations For the Situation Calculus.Electronic
Transactions on Artificial Intelligence, pages 159-178, August 1998.

[82] J. Liu and J. Wu. Multi-Agent Robotic Systems.CRC Press, London, 2001.

[83] Xin Lu and Shunichiro Oe. Recognizing and Modeling Non-rigid Human Body Actions
in Space-time. Third International Conference on Image and Graphics (ICIG’04) , pages
501-506, December 2004.

[84] Marco Mamei, Franco Zambonelli and Letizia Leonardi. Co-Fields: A Physically Inspired
Approach to Motion Coordination.IEEE Pervasive Computing, pages 52-61, April 2004.

[85] P. Mateus, A. Pacheco, J. Pinto, A. Sernadas, and C. Sernadas. Probabilistic Situation Cal-
culus.Annalysis of Mathematics and AI, pages 393-431, 2001

[86] John McCarthy and Patrick J. Hayes.Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence 4, Edinburgh University Press , pages 463-502,
1969.

[87] John McCarthy and T. Costello. Combining Narratives.Proceedings of the Sixth Interna-
tional Conference (KR’98), pages 48-59, 1998.

[88] John McCarthy. Notes on Self-awareness.DARPA Workshop on Self-awareness, April 2004.

[89] D. McDermott. An Aalgorithm for Probabilistic Totally-ordered Temporal ProjectionTech-
nical Report YALEU/CSD/RR 941, Yale University, 1994.

[90] Nik A. Melchior and William D. Smart. Autonomic Systemsfor Mobile Robots.Interna-
tional Conference on Autonomic Computing (ICAC’04), pages 280-281, May 2004.

[91] A. N. Meltzoff and R. Brooks.Intention and Intentionality, Chapter Like Me as a Building
Block for Understanding Other Minds: Bodily Acts.Atention, and Intention, The MIT Press,
Cambridge, MA , 171-191, 2001.

[92] A. N. Meltzoff. Elements of a developmental theory of Imitation.The Imitative Mind:
Development, Evolution, and Brain Bases, Cambridge University Press , pages 19-41, 1999.

[93] Neville Melvin, Robert Soricone and James Waslo. On theAutomaticity of Genetic Pro-
gramming.14th International Conference on Electronics, Communications and Computers,
page 236, February 2004.

[94] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.Springer -
Verlag, New York , 1992

[95] Orgazio Miglino, Henrik Lund and Stefano Nolfi. Evolving Mobile Robots in Simulated and
Real Envionment.Massachusetts Institute of Technology Artificial Life 2, pages 417-434,
1995.

[96] R. Miller and M. Shanahan. The Calculus in Classical Logic - Alternative Axiomatizations.
lectronic Transactions on Artificial Intelligence, pages 77-105, 1999.

BIBLIOGRAPHY 191

[97] Stefano Nolfi and Dario Floreano.Evolutionary Robotics - The Biology, Intelligence, and
Technology of Self-Organizing Machines.. The MIT Press, Cambridge, Massachusetts, 2000.

[98] T. J. Norman and D. P. Long. Goal creation in motivated agents.Intelligent Agents, Volume
890, pages 277-290, 1995.

[99] Masaki Oshita and Akifumi Makinoushi. A Dynamic MotionControl Technique for Human-
like Articulated Figures.Eurographics 2001, Volume 20, Issue 3, 2001.

[100] Oztop and M.A. Arbib. Schema Design and Implementation of the Grasp-related Mirror
Neuron System.Biological Cybernetics, pages 116-140, 2002.

[101] L.E. Parker. The effect of action recognition and robot awareness in cooperative robotic
teams.International Conference on Intelligent Robots and Systems , pages 212-219, August
1995.

[102] Linda Dailey Paulson. Biomimetic Robots.IEEE Computer Society - Computer, pages
48-53, September 2004.

[103] F. Pirri and R. Reiter. Some Contributions to the Metatheory of the Situation Calculus.
Journal of the ACM, 1999.

F. Pirri and R. Reiter. Some contributions to the metatheoryof the situationcalculus. , 1999. To
appear. http://www.cs.toronto.edu/ cogrobo/. 18 http://citeseer.ist.psu.edu/pirri99some.html

[104] J.B. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornbyand R. Watson. Evolutionary Tech-
niques in Physical Robotics.Proceedings of the Third International Conference on Evolvable
Systems, pages 175-186, 2000.

[105] D. Pratihar. Evolutionary robotics A Review.Sadhana Vo. 28, Part 6, pages 999-1009,
December 2003.

[106] C. Ramsey and J. Grefenstette. Case-based Initialization of Genetic Algorithms. Fifth
International Conference on Genetic Algorithms, pages 84-91, 1993.

[107] A.S. Rao and M.P. Georgeff. A formal Model of Intention. Pacific Rim International
Conference on Artificial Intelligence,, November 1990.

[108] A.S. Rao and M.P. Georgeff. Modeling Rational Agents Aithin a BDI-architecture.Pro-
ceedings of the Second International Conference on Principles of Knowledge Representation
and Reasoning, pages 473-484, 1991.

[109] A.S. Rao and M.P. Georgeff. BDI Agents from Theory to Practice.Technical Note 56, AAII
, April 1995.

[110] Rajesh P. Rao, Aaron P. Shon and Andrew N. Meltzoff.A Bayesian Model of Imitation in
Infants and Robots.Imitation and Social Learning in Robots, Humans, and Animals, Cam-
bridge University Press , 2004.

[111] R. Reiter. The Frame Problem in the Situation Calculus: A simple Solution (sometimes) and
a Completeness Result for Goal Regression.Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy, Academic Press, pages 359-380, 1991.

BIBLIOGRAPHY 192

[112] R. Reiter. Proving Properties of States in the Situation CalculusArtificial Intelligence, 64,
pages 337-351, 1993.

[113] Paul Robertson and Robert Laddaga. The GRAVA Self-Adaptive Architecture: History;
Design; Applications; and Challenges.24th International Conference on Distributed Com-
puting Systems Workshops - W2: DARES (ICDCSW’04), pages 298-303, March 2004.

[114] Justinian P. Rosca. Analysis of complexity drift in genetic programming.Proceedings of
the Second Annual Conference, pages 286-294, July 1997.

[115] Alfred A. Schmitt. A Dynamical Simulation of Linked Rigid Body Systems using Impulse
Technique.Fakultt fr Informatik, University Karlsruhe, 2003.

[116] S. Schaal. Is imitation learning the route to humanoidrobots?Trends in Cognitive Science
, pages 233-242, 1999.

[117] S. Schaal, A. Ijspeert and A. Billard. Computational approaches to motor learning by
imitation. Transaction of the Royal Society of London: Series B, Biological Sciences, pages
537-247, 2003.

[118] S.P. Singh and R.S. Sutton. Reinforcement Learning With Replacing Eligibility Rraces.
Machine Learning, pages 123-158, 1996.

[119] Martin John Baker. Physics - Jointed structures.Euclidean Space, 2006.

[120] Jean Scholtz, Brian Antonishek and Jeff Young. Evaluation of a Human-Robot Inter-
face: Development of a Situational Awareness Methodology.Proceedings of the 37th Annual
Hawaii International Conference on System Sciences, pages 50130c, January 2004.

[121] Xiong Shengwu, Wang Weiwu and Li Feng . A New Genetic Programming Approach in
Symbolic Regression.15th IEEE International Conference on Tools with ArtificialIntelli-
gence (ICTAI’03), page 161, November 2003.

[122] Schmidl and Victor J. Milenkovic. A Fast Impulsive Contact Suite for Rigid Body Simu-
lation. IEEE Transactions on Visualization and Computer Graphics, pages 189-197, April
2004.

[123] Aaron Sloman and Ron Chrisley. Virtual Machines and Consciousness.Journal of Con-
sciousness Studies, pages 4-5, October 2004.

[124] Russel Smith. Open Dynamics Engine.Open Dynamics Engine v0.5 User Guide, 2004.

[125] Raymond So and Liz Sonenberg. Situation Awareness in Intelligent Agents: Foundations
for a Theory of Proactive Agent Behavior.Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT’04), pages 86-92, September 2004.

[126] Roy Sterritt and Mike Hinchey. Why Computer-Based Systems Should be Autonomic.
Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS05), 2005.

BIBLIOGRAPHY 193

[127] R.S.Sutton.Temporal aspects of credit assignment in reinforcement learning. Doctoral
Dissertation, Department of Computer and Information Science, UniversityofMassachusetts,
Amherst, MA. , 1984.

[128] Michael Thielscher. Ramification and Causality.Artificial Intelligence, 89, pages 317-364,
1997.

[129] Michael Thielscher. Introduction to the Fluent Calculus. Electronic Transactions on Artifi-
cial Intelligence, pages 179-192, 1998.

[130] Michael Thielscher. From Situation Calculus to Fluent Calculus: State Update Axioms as a
Solution to the Inferential Frame Problem.Artificial Intelligence, 111, pages 277-299, 1999.

[131] M. Walker and C. H. Messom. A Comparison of Genetic Programming and Genetic Algo-
rithms for Auto-tuningMobile Robot Motion Control.The First IEEE International Workshop
on Electronic Design, Test and Applications (DELTA ’02), page 507, January 2002.

[132] Rachel Weinstein, Joseph Teran, and Ron Fedkiw. Dynamic Simulation of Articulated
Rigid Bodies with Contact and Collision.IEEE Transactions on Visualization and Computer
Graphics, 2004.

[133] W. Westenhofer and J. Hahn. Using Kinematic Clones to Control the Dynamic Simulation
of Articulated Figures.Computer Graphics International 1996 (CGI’96), page 26, June 1996.

[134] P. H. Winston.Artificial Intelligence.Addison-Wesley, Reading, MA , 1993.

