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ABSTRACT

GUIDED GENETIC EVOLUTION:

A FRAMEWORK FOR THE EVOLUTION OF AUTONOMOUS

ROBOTIC CONTROLLERS

by
Khaled El-Sawi

August 2006

The development of autonomous robotic agents capable gbleamavigation, con-
trol and planning has always been an intriguing area of reeed he benefits associated
with the successful implementation of such systems arenemas. However, the creation
of robotic controllers for the efficient manipulation of anbmous agents in real-time is a
very computationally complex task. Such complexity insessexponentially as the struc-
ture of the robot or its surrounding environment increassojphistication. We propose a
new genetic framework labelgduided Genetic Evolutigror GGE. The guided genetic
evolution platform encapsulates a connectionist modeél&dTrigger Networksfor the
representation of articulated robotic structures as welihe behavioral capabilities of
robotic agents. The evolution of trigger networks is baspdnugenetic programming
methodologies with the inclusion of specialized algorighfar the evolution of articu-
lated robotic controllers. Evolutionary guidance constislare also introduced as means
for minimizing the search space associated with the coptablem and achieving suc-
cessful evolution of agents in a shorter time duration. Aldation environment based on
rigid body dynamics is utilized for the functional modelingsystem interactions. The
simulation environment allows for the utilization of miréragent representation in order
to achieve reliable fitness allowing for the further expanf the research into the real

domain.
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Chapter 1

INTRODUCTION

1.1 Autonomous Robotic Control

The creation of autonomous robots capable of complex nagigacontrol and planning
has always been an intriguing area of research. Today, usdlasses of applications
based on autonomous robotic control are being investigatetliding those relating to
hazardous environments, transportation, service rahaitd so forth [82]. The benefits
associated with the successful implementation of suclesystre enormous. However,
the design of robotic controllers for the efficient manigigia of autonomous robotic
agents in real-time can be a very computationally complek.te&Such complexity in-
creases exponentially as the structure of the robot or iognding environment in-
crease in sophistication. The analysis of an agent’s iat@rawith the environment is
still largely unexplored due to the difficulty involved in glgning systems that exploit
sensory-motor coordination [97]. Each action performedHh®s/a robotic agent forces
changes to its internal and external state vectors, whi¢hrimaffects its decisions re-
garding successive actions. Hence, the ability to predeetbnsequences of a particular
decision can be an extremely complex yet crucial compomethie design of autonomous
robots.

In behavior-based robotics, the modutivide and conqueapproach is usually uti-
lized to reduce the complexity of robotic controller desigyn partitioning the control
problem into manageable sub-parts. This method allowsdbigder to design each mod-
ule independently solving a single problem at a time. Therobsystem is implemented
layer by layer with each layer taking the responsibility ¢arrying out a particular basic
task [105]. However, several problems exist with this appho[53]:

e The decomposition method for the robotic control systemwaba@e might not be
apparent. Hence, the division lines chosen by the desigagranmay not be the
most efficient.

e Interactivity among the different controller sub-part®yde an incomplete view
of the controller state as the interactivity with the enaimeent must also be consid-
ered.
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e Asthe number of controller sub-parts increases, the nuofipatential interactions
grows exponentially possibly going beyond the designefmbilities to define the
correlations between the different system layers.

1.2 Evolutionary Robotics

Evolutionary robotics [60] is a powerful framework usedtioe creation of self-organizing
robotic controllers capable of learning new behaviors tasetheir own interactions with
the environment. This approach relieves the designer fnreméed to partition the agent’s
behavior space or the need to map the interactions betwestiffarent system compo-
nents. The controller learning process is based on a geagpimach where an agent
population is artificially evolved based on each individuability to perform a given
task. Genetic algorithms (GA) are mostly used as the ewiutiechanism utilizing a
fitness function as a measure of each agent’s performandts.daneral form, GA aims
to produce solutions to optimization problems relatinga@é search spaces of high di-
mensionality [53]. Learning takes place through the carcsiion of new generations of
individuals utilizing genetic selection, crossover angd@am mutation. This evolutionary
cycle continues until the overall population fithess ceas@screase.

1.2.1 Limitations of Evolutionary Techniques

Evolutionary techniques can be an essential part in thgdediself-organized intelligent
behavior. However, some problems do exist that can graatlythe potential of evolu-
tionary robotics. Although the evolutionary process sisito reach a level of convergence
in performance, once system equilibrium has been readheditther evolvability of the
system may not be determined with any level of certainty.velarargues that after the
initial system convergence has been reached, only thenheatrue evolutionary work
begin [51]. Jakobi and Quinn acknowledge the same problensiog on the importance
of the crossover and mutation parameters as tools for agedisvolution [68]. However,
ascertaining the most appropriate values for the genetanpeters can still be a signifi-
cantly difficult task, specially when utilizing genomestthary in size, which is usually
the case when the representative architecture itselfasesslving.

Another critical limitation of current evolutionary robhos methods stems from the
agent’s lack of awareness of its immediate environmentisrattive role in it. The agent
usually follows a trial-and-error approach based solelyaotions taken and the conse-
guences of those actions determined primarily by the riegiNalues of the fithess func-
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tion. As the search space increases in size, the likelihb@dmverging to sub-optimal
solutions also increases. The existence of an extremejg Eate space, also callsizhte
explosion remains a fundamental problem in model optimization [4®ie inverted pen-
dulum problem, for example, as described by Sutten [127%,ahaearch space otZ.
Due to the size of the search space as well as the lack of agartevolutionary strategy,
experimentation shows that using evolutionary technicalese can yield sub-optimal
results that fall short of solving the problem (Section 2.Bence, the development of
methods for reducing the search space size or guiding thieitentary process using
loosely pre-defined strategies can increase the prohadilaccurate convergence.

1.3 Imitation-based Learning

Robotics research has recently gained more interest irationi-based learning, also
called "learning by watching” or "learning by example” [1l10Researchers now feel
that the study of imitation-based learning could be theedatthe creation of fully au-
tonomous robots [116] and could possibly revolutionizeotednvironment interactions
by providing new and flexible methods for robot programmi2tj][ Meltzoff suggests
the partitioning of the imitative progression into fourga [92]:

e Body babbling This is an essential element which facilitates the conoedte-
tween muscle movements and different body configuratiorsially, a trial-and-
error approach is utilized where random muscle triggers pdéce while the result-
ing configurations are observed and recorded. Eventuaihg@ping, or schema, is
created linking body movements to potential resultanestat

¢ Imitation of body movementdhe body schema is utilized to try and imitate an
observed movement through the usage of a probabilisticodethdetermining the
muscle groups that could contribute to a successful iroiati

¢ Imitation of actions on objectsA more advanced form of imitation where body
movements are utilized at a higher level to interact withiremment objects.

¢ Imitation based on inferring intentions of action$his stage involves an under-
standing of not only the surface actions, but also the emdxkddention associated
with performing those action.

From a human perspective, research has proven imitatiom #overy significant con-
tributor to social learning at many levels. “Mirror” neumhave been discovered whose
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sole purpose is to fire when movement observance takes pladeso similar movements
are executed by the observer [100]. From a robotic perg@edtnitation can allow for

interaction biasing in relation to the agent and the envirent; in addition, it can be a
crucial tool for constraining the search space for learffig. Imitation could also be
utilized as a tool for acquiring new behaviors as well as &dgxisting behaviors using
new contexts [24].

1.3.1 Problems in Robot Imitation

Despite the potential advantages associated with imitdiegsed learning in robots, many
hurdles still face researchers and the research commuastghly begun to address such
issues[21]. We focus on four main imitation-related praide

e The Correspondence Problerm order for imitation to be successful, an explicit
correlation must exist between the learner and the denaios{®©1]. This can be
a difficult problem, specially when the body representaiohthe learner and the
demonstrator differ.

e The When ProblemAt what instance in time should the learner be imitating® Th
learner must be able to determine the appropriateness tattiam at a specific time
based on the current context as well as the learner’s iftgoads and motivations
[21].

e The What problemThe learner should be able to selectively utilize partst®f i
sensory input streams as the basis for its imitative procdss requires a level of
relevancy determination.

e The Inference problemHow can the robot infer the intentions, perceptions and
emotions of the demonstrator that initiate the visibleawiobserved? The ability
to perceive beyond the surface behavior to infer the unoglintentions of the
demonstrator is considered the most sophisticated formitéiive learning [110].

The problems mentioned constitute formidable hurdlesenpth of imitation-based
learning. Current research, as in [21, 55, 116, 117], e#lizaliency as well as sys-
tem simplification to abridge the imitation problem. Howeva order to fully achieve
imitation-based learning in robots, solutions must exasthiese problems, or different
formulations must evolve that render such problems irggiev
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1.4 Genetic Programming

A variation of direct imitation-based learning could relg @ programmatic approach
for dictating rules that govern the learning environmenuctSrules could contribute
to the learning process by surpassing some of the criticddlpms associated with robot
imitation. This rule-based approach could still benefitdrevolutionary methods in order
to evolve the most optimal set of governing rules. Genetngmmming (GP) [74] could
be utilized as the evolution vehicle for this approach.

Genetic programming is an extension of genetic algoritHmsgead of evolving chro-
mosomes of individuals, as in GA, GP works on evolving a paogthat efficiently solve
a given problem. In GP, a program is represented using attiegere where the internal
nodes of the tree represent the set of functions upon whesprthgram is based, and the
external nodes represent variables and constants useda@a®fuparameters [75]. The
main benefit of GP lies in the fact that once the evolutiondigse is complete, a method
is produced instead of just a point solution[30]. As the eysbutput is in the form of a
program, it can better adapt to situational variance byo¥alhg the resultant algorithm
produced. In essence, GP strives to find an appropriatesequaion of the problem,
which is critical to the solution [134], through an evolutary process.

Genetic programming offers a more flexible approach to éimiuhan genetic al-
gorithms. However, GP follows the same GA combined reptasien of the genome
(chromosome) and phenome (individual) as a single entighSepresentation as well
as the main structure of GP-based evolution results in akleritations:

e GP evolved structures tend to drift towards large and slolwtisms on average
[114], so even if the solution is correct, it might not be thestrefficient.

e If the genetic code is easy to manipulate, it loses its fometi complexity [37].

e If functional complexity does exist, the nature of the gemebde manipulation
makes the results extremely difficult to reproduce with rfiodiion.

e GP suffers from the same GA problems relating to insufficéinersity and the
possibility of reaching sub-optimal solutions [30].

Gene expression programming (GEP) was invented by Fe[8if#0 overcome some
of the limitations of GP. The main contribution of GEP is tleparation of the genome
from its representation. The genome is structured as arlsyabolic string of fixed
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length and is converted to its expression tree (ET) reptasen utilizing a specialized
language known as Karva. Although GEP solves the reprasamahproblem associated
with GP, it still suffers from the problem of insufficient diksity and the possibility for
sub-optimal convergence. In addition, both GP and GEP arergézed genetic methods.
The presence of specific genetic constructs for the devedapai intelligent robotic con-
trollers in particular is an essential yet missing eleméiur example, using the current
formulation, it is not feasible to define a specific sequencéuinction execution. From a
robot imitation perspective, the specification of exeausequences would be an essen-
tial component of the "learning by example” approach, havethis element is missing
from both GP and GEP methodologies.

1.5 Situation and State Awareness

In addition to an agent’s ability to learn and execute piivaibehaviors, an essential part
of a robot’s ability to strategize lies in its own awareneggocurrent state in relation
to the surrounding environment. Situation awareness (8/tas to an agent’s ability
to analyze and understand the different parameters of tsothternal and external envi-
ronments in order to make informed decisions. An intelligeyent may rely on sensory
inputs alone in order to decide on its next course of actianydver, awareness of the
meaning of such sensory states adds to the agent’s abilfilatoand strategize effec-
tively. SA essentially revolves around the understandirigformation and the meaning
of such information in relation to the present and futureroégent’s life cycle [125]. Sit-
uation awareness is also a key element in the formulatiorgeh&tic approach for agent
planning. In order to achieve its main goal, an agent musdl lastrategy for transporting
itself from one state to the next, until the final objectivedached. Endsley [36] defines
SA as consisting of two main partitions:

e Comprehension of the agent’s current state (both intemmdlexternal) in relation
to time and space.

e Projection of the agent’s near future status.

Several formulations currently exist for formally desanidpthe state of an agent and
its environment. All existing formulations deal with théusition object from a general
sense by describing both the states of objects in the emaigahas well as actions that
could be executed within the environment. However, nonk@ékisting methods expand
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their constructs to include an agent’s ability to transitioom its current known state to a
future desired state.

1.6 Thesis Overview

The aim of this research is to formulate a new framework fer shccessful evolution
of robotic controllers for the goal-based manipulation ofamomous robotic agents in
real-time. The framework introduces a new genetic apprdalobledGuided Genetic
Evolution or GGE. The guided genetic evolution platform encapsslateonnectionist
model, labeledirigger Networksfor the representation of articulated robotic structures
as well as the behavioral capabilities of robotic agent& @Volution of trigger networks
is based upon genetic programming methodologies with ttlesion of specialized al-
gorithms for the evolution of articulated robotic contes8f. Evolutionary guidance con-
structs are also introduced as means for minimizing theckespace associated with the
control problem and achieving successful evolution of égéna shorter time duration.

A simulation environment based on rigid body dynamics ikagti for the functional
modeling of system interactions. The simulation environtadlows for the utilization of
minimal agent representation in order to achieve reliabhies$s allowing for the further
expansion of the research into the real domain.

1.7 Thesis Contribution

The proposed guided genetic evolution platform adds uné@eents to current known
evolutionary techniques. Those elements have not beenmisay existing genetic evo-
lution framework, to the author’s knowledge. GGE is uniqueeveral respects:

1. A new connectionist model, label@digger Networksis created for the encoding
of agent attributes and control capabilities. The modersfa high level descriptive
structure for the representation of control strategiesngflavel of sophistication
for the control of articulated robots. Trigger networkssof& time-based model for
the description of execution sequencing as well as contgancy associated with
each of the robotic joints.

2. A genetic evolution algorithm is formulated for the evadn of trigger networks
based on one or more fitness functions associated with theeddsehaviors. The
algorithms presented as part of the evolution framewodkalfor the processing
of trigger networks through genetic selection, crossosad mutation operators
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over multiple generations in an effort to achieve succégsfiillment of the preset
behavioral goals.

3. Mechanisms for guiding the genetic process are formdiiaterder to reduce the
network convergence time and increase the quality of theesgence results.

4. The framework allows for the inclusion lglarning by exampléechniques in robotic
evolution while circumventing the current existing lintitans that render such tech-
nigues unachievable in a practical sense.

5. The framework is successfully utilized for the controbgded robot balancing and
walking behaviors in addition to other classes of robotigtoal. Although success-
ful biped mobility has been achieved utilizing differenpés of control strategies,
the genetic approach presented offers a high level of fligyilaind expandability.

1.8 Summary

The successfully evolution of complex robotic controllérs the manipulation of au-
tonomous robots could revolutionize the design and impiteat®n of intelligent robotic
agents. Until today, the complexity of the behavioral iat#ion models of robots have
been prohibitive from a practical sense hindering any §icant advancement in the de-
sign of autonomous articulated robots. The approach affeyeguided genetic evolution
aims to circumvent many problems associated with currerihoa®logies in order to
advance the fields of autonomous agent design and impletizenta



Chapter 2

EVOLUTIONARY ROBOTICS

2.1 Introduction

Autonomous robotic motion control is a very intriguing pkein that has prompted ex-
ploration in many areas of research. An autonomous robat isdependent entity ca-
pable of making intelligent decisions about its environimeithout any explicit human

intervention. Such a robot should be capable of succegsialligating its environment
while traversing its decision space and executing plantrategies that would allow it to

achieve its goals, both immediate and long term. The contglagsociated with creating
such systems lies in the complexity of modelling the intevéy that takes place within

the robotic agent as well as between the agent and its emvenn

Most current research exploring the area of autonomoug d&#sign ignores the com-
plex problem of dynamic motion control relying heavily or tlitilization of wheel-based
robots. Such robots mainly require an evolved decisioningaknechanism capable of
controlling their basic locomotion tasks without any needdrticulated control at any
level. The utilization of wheel-based locomotion also regkithe complexity of the inter-
activity model between the agent and its environment bycidithe number of variables
associated with the control problem.

The creation of robotic controllers capable of efficientidien making based on ar-
ticulated structures requires the existence of a mechafmismanaging and reducing the
complexity of the control system. Behavior-based robattg on a divide and conquer
approach in order to partition the problem space into moreageable sub-parts. The
system is then structured as layers with each layer redgerisr controlling a single ba-
sic task. However, the divide and conquer approach has sgmiéant limitations[53].
Mainly, the system decomposition task is limited by theitibg of the designer. As the
number of partitions increase, so will the number of inteéoas that exist among the
system sub-parts possibly going beyond the capabiliti¢iseoflesigner.

Evolutionary robotics is a methodology for the design of-sefjanizing robotic con-
trollers that operate autonomously in real environmentdizinhg this approach, the de-
signer plays a less active role in the organization of systemsions as the basic system
behaviors emerge dynamically as a result of the interastimiween the agent and the
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environment [105]. This method relies on the artificial exmn of an agent population
whose characteristics are encoded as artificial chromosoBEs&ch member of the pop-
ulation is tested to determine its success in performingriacpéar given task. Agent
performance is then evaluated based on a fitness functiomtesures the agent’s ability
to produce the desired results. Only individuals scorirggtitghest performance levels
are allowed to further participate in the evolutionary ms& In the case of genetic al-
gorithms, a new population of chromosomes is produced tirselective reproduction,
crossover and random mutation. This evolutionary processiries until the overall
performance of the population seizes to increase.

2.2 Evolving in Simulation

The evolution of robotic agents is usually performed in datian due to the large number
of iterations required to produce successful results. Alsunexpected behavior associ-
ated with the initial population of agents renders them ipitaly harmful to themselves
and to their surrounding environment. However, the efiectess of evolution in simula-
tion is a largely debated topic. Brooks [22] was skepticakigards to the problems that
might exist due to the use of simulators and the difficulty afuaately simulating real
world dynamics. Miglino [95] lists some of the factors thantribute to the difficulties
involved in developing control systems for real robots tigio the use of computer mod-
els. He argues that numerical simulations do not cover alpthysical laws that govern
the interactions between the agent and the environment, Alsysical sensors usually
retain uncertain values and approximations while computatels usually return perfect
sensory information. Finally, Miglino argues that diffatghysical sensors frequently
perform differently due to slight differences in their plog makeup, while this fact is
usually ignored when building simulated environments.

2.2.1 Bridging the Gap

Although the problems resulting from the discrepanciesgmebetween a simulated en-
vironment and the real world must be acknowledged and ceresil the careful study

of such problems could introduce solutions for bridging ¢ja@ between the two envi-

ronments making simulation-based training more effecting62] and [63], arguments

are made on how to reduce the problems associated with giondan order to produce

more accurate results. The following are some of the mettiwdagh which more precise

simulated training environments may be achieved.
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e The design of the simulation should be based largely on gpate quantities of
real world data. The data should be regularly validated nwakihe appropriate
adjustments to the environment.

e The introduction of noise should be considered at all levéthe simulation allow-
ing for the simulated environment to better represent realdvnconsistencies and
imprecision.

e The utilization of adaptive noise tolerant units as parthef design will allow the
final controller to adapt to the differences between the ktran and the real world.

In order for the evolutionary process to be reliably fit, suéint conditions must be
set forth for the transfer of evolved controllers from siatidn to reality. If evolving
controllers are forced to satisfy such transfer constsaitfien despite the inaccuracy or
incompleteness present in the simulated environment vibleeed controller should still
transfer into reality [67].

2.2.2 System Modeling

The functional modeling of the relationships between thenagits goals, and its envi-
ronment must be present in order to successfully model thset@nts needed to achieve
reliable fitness. A comprehensive model of the agent’s matiestate vector, external state
vector, as well as the agent’s goal priority vector is need&sl Figure 2.1 shows, the
core system components are tightly connected based onuée gausality model. As
the agent changes its internal state, it forces change® textiernal environment vector,
which might or might not cause further change in the statdefagent. Similarly, the
agent’s current goal priority vector will be re-prioritizas the state of the agent changes.
Different goal priorities affects the controller’s subseqt decision patterns.

¥ w

&gent Target & zent [nternal External
Goals State Errrironment

A

Figure 2.1 Agent-environment causality diagram.
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In [65], a formulation is given for the accurate represeatadf the way in which the
internal state of an agent-environment system changestiover We consideg to be
a state vector representing the agent’s various interate stariables at timet. The
valueg, 1 is a function ofg, the sensory input at time t, represented asd the agent’s
goal priority vector given byg:.. Hence, given the functio8; which defines the state
transformation of the agent’s internal state system owee & 1 iS given by

§+1=S1(1,§,) (2.1)

Similarly, the external state vector of the environmeniraet + 1, given by& . 1, is
a function of the state of the environment at titrend the state of the agent at time 1.
The state of the agent’s external environment might or mngiitbe modified by a new
agent state. The functidfy defines the state transformation function for the enviramme
over time given the state of the age@t, ; is given by

&4+1=E1(&,5+1) (2.2)

The agent’s sensory input is clearly a function of the exdeemvironment. Whether
working in simulation or in the real world, the presence obedeither real or simulated)
would cause the agent’s sensory input to be only an appraximaf the external en-
vironment state and not an exact match. Consequently, tieoseinput vector; is a
function of the current state of the environméntWe define the functioh; to define the
translation between the external environment state andig/baing sensed by the agent.

it =11(&) (2.3)

Also, given the functiors, which defines the way in which motor signals are gener-
ated by the controller, the vectdy representing the generation of motor signals is given

by

G =S(%) (2.4)

In order to simulate a real world environment, noise is adddtie motor manipula-
tion signals within the environment. Consequently, thesgation of motor signals might
or might not succeed due to various conditions. A guarargastcaint must be built into
the simulated environment to guarantee the realistic egiptin of control signals. For
example, if an agent tries to transition to Stétgqet given stateSpiiiar and the current
state of the environmeniiai, the control signal vectas; will be produced. If the agent
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fails to achieve the desired state by applying the contgpias decided upon, a new set
of signals must be generated to gracefully return the agetite previous stat8pita -
Alternatively, the controller might decide not to returret@revious state and instead ap-
ply control signal vectoB, to transition to a new state other th8ga Or Sarget. The
possible transition scenarios are shown in Figure 2.2.

yes

Figure 2.2 State transitions due to motor signal application wheralternative state is
chosen given the failure to achieve a target state.

The agent’s goal vectds; is dependant on the internal state of the ageiats well
as the state of the environmegt Given the functionG; that defines the agent goal
transformations, the goal state vector is given by

G = Gi(3,8) (2.5)

The goal vector will need re-prioritization in relation tew agent states reached. For
example, the existence of a scenario where the agent is faotdea will prompt an im-
mediate goal to correct the imbalance situation beforeqeding to fulfill other goals on
the agenda. The goal vector will need to follow continuowssiens and adjustments as
the system progresses. To deal with such needs, the simwidltoave to offer a dynamic
model for the presentation of goals as well as an intelligesdrganization of goals with
every time step. The evolutionary process plays an importde in the creation of a
dynamic decision making mechanism capable of learning dagtang to rapid system
flux.

The progression of the agent-environment system can beildeddy the following
five equations:
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S1= Si(it,%,%) &1 =E1(&,5+1)
it =11(&) G = S(%) (2.6)
0 =Gi(s, &)

The interdependency present between the different moaalks for a systematic
approach for system transitioning considering all theti@hships present. Intelligence
and learning must also be core elements of the decision makechanism in order to
evolve populations that are reliably fit.

2.2.3 Minimal Simulation

The comprehensive modeling of interdependent system coemie can produce accurate
evolutionary results in simulation. However, in order t@tantee the reliable translation
of those results into real robots, Jakobi proposes the desighinimal simulations using
specific guidelines to ease the transfer of evolutionarylt®$65, 68]. The core design
principles proposed by Jakobi are as follows:

1. Alimited base set of agent-environment interactionslved in the execution of a
particular behavior should be identified. The simulatioowsti be designed around
the base set leaving other interactions to be rooted in #ileverld. This approach
would allow for the mixing of simulated and real environmpatameters yielding
a smoother transition into physical agents.

2. Differentimplementation aspects of the simulation ningstandomly varied during
the evolutionary process allowing the evolving populatiordevelop a level of
adaptability to a changing environment. Enough variatiasiie included so that
the agents will evolve without dependence on specific impleiation aspects.

3. The base set parameters must also be randomly varied #osrafion to genera-
tion and from trial to trial. This variance will increase theesence of reliably fit
agents within the evolved population as agents will be ableope with changing
environment parameters.

The minimal simulation approach increases the succesfaeolving real world
controllers. The alternative would be to process a sigmiflgahigher number of fit-
ness evaluations, which can be very time-consuming caadinige speed advantages of
simulation-based evolution to be lost.
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2.3 Genetic Algorithms

Evolutionary robotics [60] aim to develop an agent congoiased on an adaptive artifi-
cial neural network [105]. Genetic algorithms (GA) are Uguased as a teaching vehicle
through which the neural network can be trained. In its ggrferm, GA methods can be
seen as a solution to optimization problems relating togelaearch space of high dimen-
sionality [53]. Genetic algorithms are probabilistic sgaalgorithms wher& potential
solutions of an optimization problem sample the searchesfieg]. A genetic algorithm
uses a selective reproduction approach operating on a gopubf abstract representa-
tions, or artificial chromosomes. In most cases, a chromegg@nome or genotype) is
structured as a string that represents a set of paramel@iagdo the evolutionary prob-
lem under consideration. A binary representation of thee/af function variables to
be optimized, or the connection weights of an artificial m¢uaetwork, are examples of
the type of encoding a chromosome could hold. Figure 2.3 stamwexample of such an
encoding [97]. In a typical robotics application, a genetyyould represent a parameter
of the agent controller in need of optimization. In ordertolee a controller neural net-
work, the floating point values defining the weights of theneek nodes can be encoded
as integer values to be represented in the chromosome.

Fopulation Fitness
39
12
2

19

Fitness function

B(x)

74

33

Figure 2.3 The parameters encoded within the chromosomes are repedsas binary
0’s (white) or 1's (black) and combined to form the value o trariablex to be fed into
the fitness function for evaluation.
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The evolutionary process typically starts with a populataf randomly encoded
agents effectively sampling the entire search space adedaivith the control problem.
The evaluation of individuals takes place based on a welhddffitness function which
represents a performance measure upon which selectiosiatecare made. Individuals
scoring highest are allowed to reproduce sexually or asigxuhbile others are eliminated
from the mix. The genetic algorithm evaluation and seleécpoocess is represented in
Figure 2.4 [53].

 Random Hext
: Population | 5 8 Feneration
————> 098 @
i ’;... (== H
Esraluate
Breed
e a4
TE 838 el > 78 a3z
=1 elect a6

Figure 2.4 The genetic algorithm cycle of evaluation and selection.

2.3.1 Initialization

The initial population of individuals must be carefullytiailized to best suit the nature of
the problem being investigated. An initialization that isshsuitable to the problem at
hand would allow for faster population convergence. On themwhand, an inappropriate
initial selection could result in a lack of diversity caugipremature convergence to a
solution that is possibly sub-optimal. Several methoddd:be utilized to generate the
initial population of individuals [41]:

e Random Initialization: A popular method where the popuolais chosen randomly
covering the entire search space with uniform distribution

e Grid Initialization: The search space is divided into npl#iintervals of a spe-
cific size depending on the nature of the problem. The pojonas seeded using
independent selection from the defined intervals.

e Non-clustering Initialization: This method guaranteegaen distribution by plac-
ing a restriction on the initialization process where eahvidual placed must be
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a predefined distance away from individuals who have alréaéy placed.

2.3.2 Selective Reproduction

Lets consider a population of individuals whose chromosomare encoded as fixed
length binary strings from the set
C={0,1}"

where n is the length of the string encoding. Given a poputatif sizem, the entire
generatiors at timet could be represented as [17]

Gt — (Clt702t7 ~~~~7Cmt)

Selective reproduction is based on selecting individuétls the best performance record
and making copies of their chromosomes. The next genenailbimclude a higher num-
ber of copies of chromosomes belonging to individuals whasdormance was supe-
rior in previous generations. A selection operator is zgiti to improve the performance
quality of a population by allowing individuals of higherajity a higher probability of
advancing to the next generation [16]. Tioelette wheels a genetic selection operator
used to implement selective reproduction. The concepinoithie roulette wheel selec-
tion method is that each individual in the population has @ancle to become a member
in the next generation of individuals, and that chance ippronal to the performance
of this individual. Each slot in the wheel corresponds toratividual in the population,
and the size of each slot is representative of the indiviglfiiess. More precisely, given
an individual denoted as; whose fitness at timeis defined asf(c;jt), the size of the
wheel slotP[c; | corresponds to the fitness value of the individual normélliaethe total
fitness ofmindividuals in the population.

Ple ] = o Ot 2.7)
> flckt)
k=1

P[cjt] represents the probability of an individual for being choser reproduction.
After spinning the wheel N times, the expected number ofickil fathered by individual
j is NP[cjt]. There are two main drawbacks associated with using thetteulvheel
method. First, there are instances where the fitness resulss be sorted in order to
allow for the proper distribution of probabilities, whick @ computationally expensive
task and might not be practical for large population sizesco8d, the fitness function
utilized must yield positive results. If that is not the casaon-decreasing transformation
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¢ : R — R must be applied to shift the values to a usable range [17].pFbleabilities
would then be defined as

Plcjt] = M (2.8)
kgld)(f(ck,t))

Tournament selection is another selection method thatdelwiused. This method
is based upon the selection of the fittest individuals basea tmurnament among a ran-
domly selected group of individuals. The evaluation of twonpeting individuals takes
place by choosing a random numbebetween 0 and 1. If is less than a predefined
valueT then the individual with the higher fitness is chosen to berama Otherwise,
the other individual is chosen [97]. Depending on the typtafnament selection being
utilized, the selected individual may or may not be placecklato the population for
future re-selection.

Another selection method that exhibits extremely fast eogence behavior deter-
ministic selectionin this method, only individuals with the best fithess suevan evolu-
tionary round. Usually, the selection is done by selectispecific number of top-most
individuals after sorting the population according to thedss values. However, this type
of selection may produce poor long term results as low peréos are entirely removed
from the population, while they could exhibit certain ditries that could produce high
future performance.

2.3.3 Crossover Operator

As part of the evolutionary process, genetic operators tliead to apply changes to
the genetic encoding of an individual. The crossover opem®tchanges genetic mate-
rial between two parent individuals producing hybrid offeg. The application of the
crossover operation on individuals plays a central rolegnggic evolution and could be
considered one of the main characteristics of the algoriffime crossover points are cho-
sen randomly determining the section of genetic code toaresterred. Several crossover
methods may be utilized, each using a different formula &ecmining the nature of how
chromosomes are transferred between individuals.

e One-point crossover utilizes only a single random spitfoint for the chromo-
somes of the individuals, then the two tails to the right dhileft of the crossover
line are swapped.
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¢ In two-point crossover, two crossover points are randoralgted, and the genes
that reside between the two lines are swapped between tividunals.

Parent & *

Parent B [ |

Crossover poitits

Child &

Child B

Figure 2.5 Two-point genetic crossover operator. The genes residatgeen the two
crossover points are swapped between the two individuals.

e N-point crossover utilizesl breaking crossover lines where every second section
is swapped. A variation of this method is the Shuffle crossewgere a random
permutation is applied to the parents before the N-poinssoeer is carried out.
Once the crossover has been performed, an inverse peramutagierformed on the
children.

2.3.4 Mutation Operator

The mutation genetic operator is a process where changesae to an individual's
genes relying on a predefined probability. The process ikgaoas to biological muta-
tion as it maintains genetic diversity from one generatoithie next. For each of the
individual’'s genes, the predefined probabilgy is used to determine if the gene is to be
altered or left unchanged. The role of the mutation operattw allow for exploratory
moves within the search space preventing any specific pant becoming out of reach.
It also helps prevent the convergence of the evolutionaoggss to a suboptimal solu-
tion. However, the value gby,, must be small and chosen carefully so as not to result in
the chaotic changing of the genetic structure causing thegss to become more like a
random search.

Given n genes, the geng is mutated with the probabilityy,. Usually, a random
numberr is generated between 0 and 1, and the mutation takes plase iy Similar
to the crossover operator, several mutation methods matjllzed [17]:

e Single-bitinversion: A single randomly chosen bit is negated with probabifigy
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e Bitwise inversion: Each bit in the genetic string is inverted with probabilogy

e Random selection:With probability pm the entire string is replaced by a randomly
generated string.

2.3.5 Core Components

Based on the principles discussed, we identify several coipts as core elements of
the genetic algorithm. These core components must be uselson in order to produce
the evolutionary results desired. Different variationgath component exist; however,
the principles governing their usage are standard, andriexpetation may be used to
determine the best variation for a specific problem at harite féllowing are the core
components of the genetic algorithm:

e Generation of initial population: A random initialization process may be used,
however, in robotic control problems, special constraméy be placed on the ini-
tialization process so as not to produce individuals whetetior may be harmful
to themselves or the environment.

e Evaluation of individual performance: A fitness function is used to evaluate the
performance of each member of the population. The reswdtstared and used to
determine the probabilities of individual selection.

¢ Individual selection for reproduction: Based on each member’s performance in
relation to the fitness function, one of the selection meshdulette wheel, tour-
nament or deterministic) is used to choose the set of indal&lto proceed to the
next generation. The higher an individual’s performaniee Higher the probability
this individual will be selected.

e Generation of offspring through crossover: The next generation of offspring are
generated by choosing and applying one of the crossoverotetto the parent
population. This would involve the swapping of genes betwaarents producing
the offspring.

e Mutation of selected offspring: Individual genes are mutated using a predefined
probability pm. The mutation method utilized is chosen depending on thieleno
at hand.
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e Repeat until terminating condition is met: Any of the following conditions may
be chosen to terminate the evolutionary process:

— A target generation number is reached,
— A specific average fitness is reached, or

— A specific maximum fitness is reached.

The following algorithm describes the evolutionary praces

Procedure Genetic Algorithm begin(1)
t:=0;
initialize G;
evaluate G;
While Not termination-conditiomlo
begin(2)
t=t+1;
select G from G_q;
crossover @
mutate G
evaluate G
end(2)
end(1)

2.4 Genetic Encoding

In order to successfully carry out the genetic process, sead needed for encoding
the different attributes of the agent being evolved. Twonmencoding schemes are
mostly used: Binary-Coded Genetic Algorithms (BCGA) andReode Genetic Algo-
rithms (RCGA). The following sections discuss the main elstaristics of both encoding
schemes.

2.4.1 Binary Coding (BCGA)

Binary coding utilizes a string of binary bits of lengtho represent each chromosome in
the population. The following case study demonstrates shge of BCGA as well as the
application of the different genetic operators on a binaged structure.

Our study will utilize a roulette wheel selection methodrajavith two-point crossover
without mutation. We consider the simple problem of finding mmaximum of a polyno-
mial function[17]. We define the polynomial functidnas
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f1:{0,....,63} — R
X — 3P4+ 2x+1

We choose a binary string = {0,1}° where a value fron{0, ....,63} is used to en-
code the chromosome of each individual within the poputatiéach individual will be
represented by a bit sequence to indicate a value corresypiak. The fitness function
for each individual is then calculated by evaluating thecfiom 3¢+ 2x+ 1. Given the
number of bits1to be encoded, we choose an initial populat®of sizesto be initialized
such that

Vgi € G,g(ix) = Randon0, 1],i € {1,...,s},ke {1,...,n}

The initial population is chosen of size 10 yielding the ramddistribution shown in
Table 2.1. The last column shows the probability of choo#iregndividual for reproduc-
tion based on the roulette wheel selection method.

Individual Chromosome xvalue f(x) pi
genotype phenotype fitness selection

1 111001 57 9,862 0.17
2 011100 28 2,409 0.04
3 110110 54 8,857 0.16
4 101101 45 6,166 0.11
5 001100 12 457 0.01
6 111110 62 11,657 0.21
7 110101 53 8,534 0.15
8 101001 41 5,126 0.09
9 000001 1 6 0.00
10 100001 33 3,334 0.06

Table 2.1 Initial random distribution of genetic code. The rouletiheel selection
method is used to produce the reproduction probahiitshown in the last column.

In order to evaluate the fitness of each individual, the eadadhromosomes must be
decoded to produce a performance value. In this particelmagio, where a bit-string
is used, each chromosome is decoded by evaluating the desguisialent of the binary
value stored. Given the encoded string {0,1}", the chromosome is decoded as

n—1 «
c= ) sn—k-2
kZO
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The computed results exhibit an average fitness of 5,640ewe maximum fitness
achieved is 11,657. The selection probability is computeskd on the formula

fi
m
>
k=1
For example, individual number 6 scored the highest on thedg evaluation with
a score of 11,657 yielding the highest selection probatiit21%. On the other hand,

individual number 9 scored the lowest yielding a probapiligry close to zero for repro-
duction. The fitness statistics of the initial populatiosh®wn in Table 2.2.

pi =

Total  Average Max
Fithess Fitness Fitness
56,408 5,640 11,657

Table 2.2 Fitness statistics evaluating the performance of theim&andom population.

The selection operator is then applied based on the reptiodymrobability of each
individual. The results of the application of genetic setatis shown in Table 2.3, while
the associated fitness statistics are shown in Table 2.4.

Individual Chromosome xvalue f(x)
genotype phenotype fitness

1 101101 45 6,166
2 101101 45 6,166
3 110111 55 9,186
4 110100 52 8,217
5 111100 60 10,921
6 011110 30 2,761
7 011100 28 2,409
8 111110 62 11,657
9 101001 41 5,126
10 111101 61 11,286

Table 2.3 Second generation of individuals after applying the sele®mperator.

The overall fitness of the second generation is clearly hitites that of the first. The
probabilistic selection of the best individuals of the figgineration produced an eleva-
tion in the average fitness achieved by the population. Thegwint crossover genetic
operator is then applied to the second generation of indalsl The method relies on
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Total  Average Max
Fithess Fitness Fitness
73,883 7,388 11,657

Table 2.4 Fitness statistics evaluating the performance of thergigeneration produced
by the selection operator.

the random selection of two crossover point for the transferenetic material between
two individuals, as shown in Figure 2.5. In the bit-stringnesentation, the bits residing
between the two crossover points are swapped. Table 2.5rdrates the application of
the two-point crossover method. The second column showsdngduals pre-crossover,
while the fifth column shows the individuals after the cragsdias been performed based
on the two random points chosen.

Individual pre- Point1 Point2 post-
crossover crossover
1 101101 2 6 101101
2 101101 2 6 101101
3 110101 3 5 110111
4 110110 3 5 110100
5 111110 2 6 111100
6 011100 2 6 011110
7 011100 4 4 011100
8 111110 4 4 111110
9 111001 1 3 101001
10 101101 1 3 111101

Table 2.5 Application of the two-point crossover operator to thess®t generation of
individuals.

After 20 generations of selection and crossover, we canlse@verage fitness of
each generation increase gradually over the previous asnsimoFigure 2.6. For this
simple problem, the optimal average fitness is reached byl ifegeneration, which
demonstrates a relatively rapid convergence. Howeveeratiore complex problems
may require hundreds or thousands of generations for thitsde converge.

2.4.2 Discretized Search

When dealing with discrete values fgrthe chromosome binary encoding is direct. How-
ever, when dealing with a range of continuous values, digett@n of the search space is
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Figure 2.6 Evolution over 20 generations of individuals.

needed. One technique for achieving discrete values fartheding of agent attributes is
to divide the search space int® ibtervals and represent each interval by a point that can
be enumerated. This strategy would yield@ints to be encoded using a binary string.
In the general form, given the intervial, b], the encoding function is described as [17]

Cofab [0 — {0,1}"
X —  bn(rnd((2"—1)-5=2))
whereby, is a function which converts a number frdif, ..., 2"~1} to its binary repre-

sentation. The decoding function can be defined as

Chjab 1 {0, 1}" — [a,b]
s — a+bing(s)- 52

Lets consider the problem of finding the maximum of the fuoti

f,:[0,15 — R
X — /X COgX)

The plot for the function is shown in Figure 2.7. We will cheas= 16 for the
discretization of the search space yielding a solution mayuof 114E~4. We will now
apply the evolutionary algorithm to a population of 100 induals using the roulette
wheel selection method, two-point crossover and randonatiout with a probability of
0.001.
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Figure 2.7 Plot of function x =/X- cogX)

The results of the evolutionary process are shown in Figue/2n optimal approxi-
mate solution was reached by the tenth generation, Forxperenent, the results show
how quickly an evolutionary algorithm can reach an appr@tarsolution for a particular
problem compared to an exhaustive search which scans tine search space. An ex-
haustive search would requiré®2= 65,536 evaluations, while the optimal solution was
reached using 18 100= 1000 evaluations.

2.4.3 Schema Theorem

The schema theorem was formulated by Holland [60] in 1978 jigprovides theoretical
expectations of a GA over the evolutionary process. Therdmaepresents the first
attempt to explain why GAs work, as it describes the propagaif schemata from one
generation to the next under the influence of selection,son@s and mutation. Some
criticism does exist over the schema theorem; howeveraddis work does effectively
describe the way searches take place using GAs.

A schema describes a pattern present among a subset of dowmas. For example,
the schema = 1x 1% 00 represents the chromosomes:

{(101000, (101100, (111000, (111100}

Two features ot are described as follows [57]:
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Figure 2.8 Discretized search evolution results. Optimal solut®mneached within the
first 20 generations of evolution.

e The order ofe, denoted byo(g), represents the number of fixed symbols present in
€.

e The defining length o€, denoted byd(¢), represents the difference between the
first and the last fixed symbol in

The informal statement of the Schema Theorem isghatt, low-order schema with
high average fitness will increase in number in the follovgegeration We now consider
a binary-coded chromosome of lend@thThe functionf (€) represents the average fitness
of the instances a&fin the population, whild denotes the average fitness of all individuals
in the population. The number of instances af the population at generation tis defined
asm(g,t). After the application of the selection, crossover and tiereoperators, the
expected number of instancessah generatiort + 1 is given by [60]

e t+0) > mie.)- N (1 pe- 28y (1 e (2.9)

After applying the selection operator, the expected nurabepresent isn(e, t) - f—(]f—)

The probability ofe being present after applying the crossover operator iscxppated

by(1— pc- f__’%). We notice that the probability is inversely relatedte). The probability
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of € being present after mutation is approximated by pm)o(s) and itis inversely related

to o(g).
The condition for a schema to increase its fitness in the rex¢igtion is given by
f(£) 6<8) o(e)
< (1—pc | 1) (1—pm)

The Building Block Hypothesipi7] is closely related to the Schema Theorem. It de-
scribes the behavior of GAs in an effort to discover and expldlections of closely in-
teracting genes. The collections are further combineddatersuccessively larger blocks
that eventually solve the problem [34].

The main criticism of the Schema Theorem is in the fact thatttfeorem does not
take into consideration the effects of crossover and nanatn the evolving populations.
Such effects change the structure of the chromosome as svifleasuccessive effects of
the genetic operators. A more sophisticated presentatittredheorem will have to take
into account the affects of mutation as it allows for the tiogaof a child whose schema
belongs to none of the parents, also called schema cre&atema disruption is also an
important phenomenon which must be considered. Disrumtgmurs when the schema
of the child differs from that of its parents.

2.4.4 Arguments for BCGA

Two main arguments exist for using binary-coded genetiorgigms. The first argument

is that the use of the binary alphabet maximizes the imgdaniallelism in the evolutionary

process. A binary-coded genetic algorithm processes aaggg amount of information

in parallel, and that is partly due to the nature of the bir@phabet where each part of
the chromosome is a separate entity.

For a given information content, strings coded with smakdphabets are representa-
tives of larger numbers of similarity subsets (schemataptstrings coded with larger
alphabetq57].

The second argument relates to the number of fithess evalgdiasible in relation to
the problem being solved. This problem may be managed thrtheychoice of smaller
population sizes as well as smaller number of genes witladh earomosome. This would
reduce the computational expense of the evolutionary geoce
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The binary alphabet offers the maximum number of schemataitpaf information[48].

Despite the advantages of using BCGA, some drawbacks db duesto the fact that
a large portion of optimization problems utilize real-vaduparameters. The first disad-
vantage is that the interval for value discretization messjpecified in advance. Classical
BCGA methods do not allow for an unbounded search of theisolgpace, and a very
large interval would require a massive number of partitionsover it, or the precision of
the results will have to be sacrificed. In addition, the aacyiof the solution produced is
limited by the width of the discretization interval widthvgn by
1
2n—1

Due to some of the limitations of BCGA, other coding schenmestbeen developed
to deal with specific types of problem parameters. The netigediscusseReal-coded
Genetic Algorithms (RCGAWwhich was developed specifically to deal with real-valued
parameters in a more practical manner.

2.45 Real Coding (RCGA)

Coding the chromosomes of individuals as real numbers alfowthe direct representa-
tion of problem parameters in the genetic code. An N-dinmraivector of floating point
numbers may then be used to represent each individual inojn@gtion. The size of the
chromosome vector will be the same as the size of the vectmhwapresents a solution
to the problem, so each gene in the chromosome represerrialaleaf the problem [57].
The use of real-coded genetic algorithms (RCGA) offers maahyantages over the use
of BCGA.

¢ Real coding allows for encoding the different chromosonges ¢type) without the
need for any translation of the problem parameters. Thetgpa@nd phenotype
become the same. This allows for a much simpler genetic septation of the
problem.

e Encoding parameters as floating point numbers allows foexpdoration of very
large domains without loss of precision.

e RCGA allows for the utilization ofgradualityin order to achieve the desired solu-
tion. With BCGA, changing a single gene can cause a drastingdhin the fithess
value of the individual. However, RCGA allows for the grabtciaanging of chro-
mosome values in an effort to achieve gradual enhancemém iiitness value.
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The selection operator discussed for BCGA can be used withAR®@ithout the need
to make any modifications. The selection process is iddragat is based on the fit-
ness values of the individuals regardless of the method @fding being utilized. The
crossover and mutation operators, however, will need tergalsome modifications as
shown in the following sections.

2.4.6 Crossover Operator for RCGA

The crossover operator for RCGA carries the same princgdélat of BCGA. The main
purpose of the operator is to swap genetic material betweernidividuals creating off-

spring that share the characteristics of the parents. Tih@wiog are the most common
crossover operator types used for RCGA:

e Simple crossover:this crossover type is identical to the one-point crosséwer
BCGA. Instead of swapping bits between the two individufitsgting point ele-
ments are swapped. Given the two individW@is= (c},c}, ..., ct) andC, = (¢, 3, ..., c2),
the crossover locatiok € {1,2,...,n— 1} is chosen at random, then the two off-
springb; andb, are structured as follows:

b1 = (01’1, C2.1,.-+,Ck 1, Ck+1,25 --+5 Cn’z)
b2 = (Cl’z, C2.2, .-+, Ck 2, Ck+1,15 --+5 Cn,l)

e Flat crossover: Given the individuaCi = (¢}, b, ..., ), the offspringa = (X1, Xz, ..., Xn)
is created using the vector of random val@esro, ...,rn) where

X =ri-c+(1—-r)-c?

e BLX-a crossover: This method is an expansion of the flat cross over method. In
order to allow values outside of the interadin(x}, x?), maxx', x?)] to be included
in the offspring generation, this method expands the rarygthé percentage.
Each element of the offspring chromosome vector is chosem r@ndom value
from the interval [17]

[min(xt, x?) — 1 - o, max(x, x?) +1 - a
where
| = max(x’, x?) — min(x", x°)

and the parameterhas to be chosen in advance to control the amount of expansion
taking place.
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2.4.7 Mutation Operator for RCGA

The mutation operators for RCGA operate on individual chweames changing their
genetic structure. Given the chromoso@e: (cy, ..., G, ..., Cn), any of the following mu-
tation method may be applied to char@4].

e Random mutation: each gene; is replaced by a random value generated from the
predefined intervaky, byi].

e Non-uniform mutation: this method allows for the impact of the mutation to be
less significant as the number of generations increaseghgtbe the maximum
number of generations to be evolved, anddgdte the current generation number.
The geneg; is then calculated using one of the following two valuesdsid at
random with equal probability)

¢ =% +A(t, bi —x)
G =X~ At % - a)

At(t,X) = X- <1— r<1_9miax)b>

The valueb is chosen by the user to determine the significance of thatioer
number on the mutation result.

where

2.4.8 BCGA-RCGA Comparison

Figure 2.9 shows two comparative graphs for the maximingbi@blem initially intro-
duced in section 2.4.2. The upper graph shows the evolutgults demonstrated earlier
using the BCGA techniques discussed. The lower graph, henvsliows the results for
the RCGA implementation using chromosomes based on relgecparameters. A pop-
ulation of 100 individuals was chosen, and the chromosonead individual was coded
using thex value to be optimized, thus the problem parameter was intfi@cgenotype
to be evolved. The BLXa crossover method was used to allow for expanding the search
target area in an exploratory manner. An expansive crossovalue of 0.1 was chosen
as an intermediate value to limit the deviation from any geemililts reached. A mutation
probability pm = 0.005 was used to promote stability while keeping the mutafiéator
still present. As shown in the figure, the results are alndesttical. Such results demon-
strate the effectiveness of RCGA encoding methods elinmgahe need for discretizing
the parameter search space.
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Figure 2.9 Two graphs showing the comparative performance of BCGARGGA. The
top graph represents the BCGA solution covered in sectibi2 2while the bottom graph
shows the RCGA solution to the same problem.

2.5 Evolving a Robotic Controller

In this section, we discuss the utilization of evolutiongghniques in the creation of
a robotic controller capable of making real-time controtid®ns. The controller we
will demonstrate handles the inverted pendulum problemghvis often utilized as an
example of an unstable dynamic system with multiple paramseihe evolutionary pro-
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cess will allow for the controller to optimize its own penfioance through the knowledge
gained while performing the task. This is accomplished ubfothe evaluation of the
outcome of individuals after each experiment, followed tgleng the producers of the
best results.

The inverted pendulum problems deals with the task of keppingid pole, which
is hinged to a moveable wheeled cart, from falling to the gcbuThe pole is free to
move about the hinge axis within the vertical plane and wdaldunder the force of
gravity unless the cart is moved in an appropriate fashi@otmter any falling potential.
The cart is also constrained to a maximum distance from it&lirstarting point. In
order to successfully handle the balancing task, the chetraust be capable of applying
corrective left and right forces to the cart to compensaté®pole’s rotation, yet without
having the cart exceed the maximum distance allowed. Figur@ demonstrates the
overall characteristics of the inverted pendulum envirentijl].

0

II'I:'I.E.:{ —

k4

—‘ & .

Figure 2.10 The inverted pendulum environment.

The following four parameters are available to the congradlt each time step

e X the horizontal distance of the cart along the x-axis mesastrom the cart’s ini-
tial starting position. The value is given in meters and isstmained to a maximum
value 0fXmax

¢ \;: the horizontal velocity of the cart along the x-axis. Thé&ueds given in meters
per second,

e O;: the pole’s clockwise angle measure to the z-axis. The @agjwen in degrees,
and the maximum angle bounds allowed to maintain succesafahcing ist8may,

e . the pole’s angular velocity measured in degrees per second
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For this particular system, a failure state is reached ifgble falls past the given
angle (8] > Bmay, or if the cart reaches the maximum distance allowed. Im&diterms,
at timet, the system statg is described as

_J Lif 6] < OmaOr [%| < Xmax
~ | 0,otherwise

In order to evolve individuals capable of balancing the palecessfully, a fithess
function formulation is needed to the gauge the performariceach individual. The
fitness function accumulates a valué for each time step during which failure did not
occur. For example, if the pole was successfully balanced 0 time steps, then the
resultant value of the fitness function is 100. Once failweuos, the pole is reset to the
vertical position and the cycle repeats for the next indiaid

2.5.1 Physics-based Simulated Environment

A physics-based simulation environment based on Rigid Bdglyamics was utilized for
evolving individuals to perform the inverted pendulum tasiccessfully. The environ-
ment accurately simulates gravitational forces as welhadtiction forces between the
tires and the ground. Figure 2.11 shows the simulated emviemt being utilized.

Figure 2.11 Physics-based simulation environment utilized for theligation of the
evolutionary algorithms.

A fixed time step ot = 1/30 is used as the basis for the dynamics engine stepping.
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Although the physics-based simulation environment reggumore processing time per
time step than using direct mathematical methods for caling the different parameters
of the environment, the added elements of collision desaciind response adds to the
reality of the simulation as many parameters interact togyeio produce a single result.
Such interactions increase the level of noise in the sinaranvironment causing the
results to be more reliably fit. The training takes place withrendering the scene after
each time step in order to speed up the evolutionary progdss. each failure, or if the
maximum time step is reached, the pole is reset back to thiealgoosition, and the next
individual takes control of it. Once the population has ged| then the best individual is
chosen for a rendered run to visually show the results ofibkigon.

2.5.2 Fixed-magnitude Force Application

The original inverted pendulum experiment utilizes cotikecforces of a predefined fixed
magnitude in order to compensate for the motion of the pofer@ of zero magnitude
is not permitted at any time step. The inverted pendulum Iprotdefinition follows
the principles presented by Barto, Sutton, and Andersohifilat the search space is
divided up into partitions (boxes) which produce specifigéh ranges for each of the
problem parameters.

Each of the four input parameters is partitioned into midtgectors of interest. This
approach yields a discrete number of states for which the@ter could adapt its signals.
The symmetry between the positive and negative parametessiat taken into account
in order to maintain the realism of the control environmdiite four parameters are par-
titioned according to the ranges shown in Figure 2.12. Thashwd yields 162 distinct
states to which the controller must adapt its decision ntakifss this experiment will
utilize forces of a fixed magnitude, and zero force applarais not allowed, the resultant
control signal will either be a command for left-force applion or right-force applica-
tion. Hence, a binary value would be sufficient to descrileedbntrol signal needed to
compensate for the motion of the pole. For each of the 162sstatsingle binary value
can yield the application of the appropriate force.

An RCGA encoding scheme is used to structure the chromosofrbe individuals
to be evolved. Each chromosome will contain 162 genes (figaidint numbers) each
representing a particular state of the problem. The RCGA&ing was chosen instead of
BCGA to allow for a gradual learning curve that has a bettancle of approaching better
results. The individuals will be evolved so that the commgrassociated with each state
(gi < 0.5 for left andg; >= 0.5 for right) would be optimized from one generation to the
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Figure 2.12 Search space partitioning for the inverted pendulum grobIThe partition-
ing yields 162 distinct states.

next. The following parameters were used in the evolutippaocess:

e Number of individuals: 50
e Number of generations: 100
e Crossover expansion range: 0.1

e Mutation probabilitypm: 0.01

2.5.3 Results

The evolution results (Figure 2.13) show a steady increaperformance that took place
over the first 40 generations. The last 60 generations peatifimess results that were
confined between 2,300 and 2,800 showing a slowing down itetraing process. Such
a halt in learning is attributed to the complexity of the gesb as well as the delayed
reward or penalty associated with each decision. A wrongrobdecision would cause
a failure to occur several hundred steps later or more makidgficult to trace back

the source of failure. Other methods, like reinforcemeatreng for example, which is
beyond the scope of this discussion, allow for such backwaogagation of reward or
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penalty to further enhance the learning curve. Howevemfam optimization point of
view, the evolutionary process is still the most effectiweltfor searching the problem
space and yielding significant results using a small numbiem@tions.

3000 T T T T T T T T T
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2000
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0 iO 20 éO ;O éO éO ;O éO 50 100
Figure 2.13 Evolution results for the inverted pendulum problem atilg physics-based

rigid body dynamics engine. The graph shows the averagesitomer 100 generations of
evolution; each generation included 50 individuals.

The experiment was repeated using the code written by S{&&#] which utilizes
Euler’s method for applying the equations of motion. Theyatifference between the
environment used in the first experiment and the second ieintilization of rigid body
dynamics. The first experiment took into account the fritéloand interactive forces
between the environment bodies producing an approxim#tainncludes a level of noise
which better resembles real world results. However, therse@xperiment used only
numerical approximations applying the equations of mobased on the action decided
upon by the controller.

As seen from the results shown in Figure 2.14, the overa#i$gmeached significantly
higher values than in the previous experiment. Over the3Dsjenerations, the results
were similar to the results based on rigid body dynamics,dvew a drastic improve-
ment took place over the last 10 generations. Such signiftitiarences in results show
the importance in building simulations that better reseslpéal world environments. A
simulation based solely on numerical methods without garthe complex interac-
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Figure 2.14 Evolution results for the inverted pendulum problem miilg only numerical
approximations of the equations of motion.

tions between bodies might show great results only in sitrmrabut those results do not
translate well into real robots operating in a more complexrenment which includes
higher levels of noise. Section 2.2 offers a more detailedwdision of simulation-based
evolution.

2.6 Conclusion

Evolutionary robotics utilizing genetic algorithms offextremely powerful methods for
rapid solution approximation, even when the scope of thélpro covers a very large
search space. Evolutionary robotics has the following athges:

e A thorough understanding of the dynamics of the problem isme®ded as the
evolutionary process allows for the discovery of the besitam to the problem
using a self-organization mechanism.

e The fine tuning of evolutionary parameters is possible atigwor a more refined
search when needed.

e The evolutionary process is very fast in finding a solutiocensing very large
search domains over only a few generations.
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e The genetic algorithms are generally easy to design andeimgrht. Usually the
genetic chromosomes map directly to the problem parameters

The following disadvantages are also associated with &éoeolary techniques:

e Problems requiring a very large number of parameters miginerge to subopti-
mal solutions.

e Choosing unsuitable parameters for the genetic algorittangossibly yield inac-
curate evolutionary results or longer convergence time.

Despite the disadvantages mentioned, evolutionary robgtiovide many possibili-
ties for the creation of complex controllers that evolvedabsn their own relative perfor-
mance. Although beyond the scope of this discussion, thieigeoary process may also
be combined with other neuro-based methods to provide tkibifiey of neural networks
as well as the fast optimization possibilities of genetgoaithms.
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GENETIC PROGRAMMING

3.1 Introduction

The automation of algorithm design for solving complex peots is a very intriguing
field of study. Such automation could decrease the time reddor achieving a solution
as well as allow for the automated optimization of existinfusons [30]. However, the
formulation of an automated platform for the efficient constion of algorithmic solu-
tions to problems can be a very complex task. Genetic Pragiagh(GP) [70, 71, 72] is
a methodology based on genetic evolution and used to evigleathmic solutions in the
form of computer programs. GP represents a natural evaliitam Genetic Algorithms
(GA) [60] as it aims to reduce human intervention [131] inusimn finding. Instead of
evolving chromosomes that represent a point solutions tolalgm as in GA, GP evolves
a more flexible structure representing a program. In essé&ieroduces a method for
solving a problem rather than just a point solution [30], drat is one of the main benefits
of genetic programming. GP has been successfully utilipedl&éveloping solutions in
many areas, including data mining and classification [42hlzolic regression [121], sys-
tem modeling [80] and robotic control [131]. GP has also piaatl a significant amount
of human-competitive results, as documented by Koza [74].

3.2 Components

GP uses many of the same methodologies utilized in GA ewlufihe main distinction
lies in the nature of the entities being evolved. GP evolvegiam components structured
in a tree-based fashion through the application of gengterators very similar to the
ones used in GA. In GA, the individuals are usually compodedifterent parameters
that represent a solution to a particular problem. GP inddiais are composed of different
primitive components that form a program or algorithm fdwsay a particular problem.
Those primitive components are usually connected via adireeture that represents the
program to be evaluated using the associated fithess fun&i® operators then perform
on the trees within the population by changing their strrecin order to achieve better
overall fitness. The following main components are utilizethe GP framework:

40
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e Functionsrepresent core components of the genetic programming apiprol he
essence of the process is to combine functions with difteyesblem-specific pa-
rameters in order to create a solution to a problem. Funstioay represent prim-
itive tasks, like addition, subtraction and multiplicatifor example, or they may
represent problem-specific complex tasks that could béstlesss single entities. If
a task may not be represented as a single entity, it may bitiquaet into smaller
tasks for inclusion in the evolutionary process.

e Terminalsare combined with functions in order to represent the alphatthe pro-
grams being evolved. Terminals are usually composed oébkes and constants
to be treated as parameters to the various functions defByedombining termi-
nals and functions using a tree-based structure, a prograneated that could be
evaluated in relation to its ability to solve the problemrgginvestigated.

e Thefitness functions a very important component that simply carries the essenc
of genetic programming. Once a program has been createdgincmmbining the
different system primitives, the performance of the progizas to be evaluated,
and this is achieved through the use of the fitness functibe.dppropriateness of
the fitness function is key to the successful and optimal emance of the genetic
process. Hence, the function has to be chosen carefullyttasaan appropriate
measure of performance. The output of the fithess functignref@esent a numeric
value resulting from the execution of the genetic programgay represent an error
value that measures the difference between the progranutoanypl a pre-defined
desired output, or it may take any other form to be determinetthe designer.

The human designer must supply five main components to theaaieivork in order

to commence the evolutionary process. The five componeptiedeare described as:

1. The set of terminals representing problem-specific séa& zero-argument func-
tions, and constants.

2. The set of primitive functions to be utilized in the prograolution.
3. The fitness function to be used to measure the performdmeaehb individual.
4. Evolution-specific parameters used to control the eiarary process.

5. The termination condition used to determine when theu\asl terminates in order
to present the results.
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3.3 Structure

Genetic programming utilizes tree representations to dgfossible solutions to a prob-
lem. Programs are encoded@gitax treeghat represent a possible solution to a prob-
lem. The function parameters define expressions involvargailes, constants as well
as primitive operations. The specific functiBiix+ y* X, X y) would be represented by
the syntax tree shown in Figure 3.1. The leaf nodes of theagyin¢e represent terminals
containing variables and constants. The interpretatidhe tree starts at the leaf nodes
and moves up the tree in a recursive fashion. This meansrif@ter to evaluate any
node, its children must be evaluated first producing resaltse propagated up the tree
until a final result is achieved.

Figure 3.1 The genetic programming representation of the fund&on

Similar to higher level programming, a genetic program misp &e composed of
multiple partitions (modules or subroutines) utilized @aching the final solution. This
is accomplished by grouping multiple sub-trees (branctegther under a singi®ot
node. Such representation allows for each branch of thedriee dedicated to solving a
specific task, then the different solutions are groupedttmyeo produce a single result.
This allows for the utilization of modularity in building ¢hfinal algorithmic solution. In
addition, it allows for the generation of more complex pangs utilizing simpler func-
tions residing at a lower level of the solution tree. A repreation of a multiple sub-tree
program is shown in Figure 3.2[73].

1Tree interpretation means traversing the tree using afépstiategy in order to achieve a result. This
would be equivalent to executing the program representdtedtree.
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Figure 3.2 Multiple sub-tree program representation.

3.4 Genetic Operators

GP uses genetic operators very similar to those utilizedAra&means for evolving gen-
erations of individuals towards higher fitness. Once the$isnof an entire generation is
evaluated, several genetic operators may be applied in order to pethenext gener-
ation to be evolved. The process continues until a maximumb®au of generations has
been reached or a particular fitness value has been recortiedermination condition
may be based on the maximum fitness value achieved by a simtlgdual, or it may be
based on the average fitness value for an entire generatswrallyl once the evolutionary
process has commenced, no human interaction takes plaeeprdbess operates on an
automated basis until the termination condition has been e only exception would
be if the user determines that a need exists for terminatiegénetic process manually
at a given point in time. The following sections identify tt@re operators utilized in GP.

3.4.1 Selection Operator

Reproductive selection is usually based on the performah@ach individual by as-
signing a selection probability that is proportional totthmalividual’s fithess score. The
selection methods used for GP are very similar to their GAtenparts. The following
are some of the most popular selection methods being wtilize

e Theroulette wheemethod performs selection based on the probability foraepr
duction of an individual. The selection probability of imtlual cj is given by the

2The fitness of a generation is evaluated by allowing eaclvididal an attempt at solving the problem
then evaluating the performance using the problem-spditifiess function.
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formula
f(cjt)

P[Cj,t] ~m
> flckt)
k=1

where the individual’s fitness at tintds defined asf (cjt). The size of the wheel
slotPic;;] is normalized by the total fitness ofindividuals in the population. The
reader may refer to section 2.3.2 for a detailed discusdiselective reproduction
as it relates to genetic algorithms.

e Tournament selectiois based on selecting two individuals at random from the pop-
ulation and the individual with the higher fitness value gexts to the next genera-
tion. The individuals may or may not be returned back to threegal population for
the next random selection depending on the method beingadtil The tournament
proceeds until a sufficient number of individuals have besacted for the next
generation.

e Rank selectiomtilizes the rank of individuals instead of their fitnessueahs the
selection criteria. For example, the top ten performers beaghosen regardless of
their specific fitness output.

3.4.2 Crossover Operator

Although the essence of the crossover operator is simildwaioof GA, due to the signifi-
cant representational difference between the two framlesydre application of crossover
in GP is different. Since GP individuals are representeatas trees, the crossover op-
erates on the tree structures exchanging parts of the tpeesentations of individuals.
The exchange takes place by selecting a random link in eaehttien exchanging the
associated sub-trees between the two tree representatianee 3.3 demonstrates the
crossover operation being performed on two individuals.

One of the main advantages of genetic programming over igesigorithms is that
identical parents may produce children that are diffenembfthe parents. The tree struc-
tures allow for such crossover to take place as the operaiibalter the original trees
creating children that are different from the original. Aample of this type of crossover
is shown in Figure 3.4.



CHAPTER 3. GENETIC PROGRAMMING 45

Parents

.- Crossover Points - __

Children

Figure 3.3 The crossover operation performed on two parent treesatealifferent.

3.4.3 Mutation Operator

Mutation operates on a single individual by altering thedure of its representative tree.
This is usually done by selecting a random mutation link ttegrhacing the sub-tree below
the link with a randomly generated sub-tree. Genetic nmutadillows for exploratory
moves into the search space possibly discovering new and gficient methods for
solving the problem. Mutation may also be implemented agalae crossover between
the selected individual and a randomly generated tree. r&igb shows the random
mutation operator being applied to a single individual.

3.5 Implementation

Many programming languages have been utilized to creater@Reivorks. Lisp has
evolved as one of the prominent languages for GP, sincedtss®e structure facilitates
the use of tree-based organizations. Linear represensdtias also been utilized to build
successful GP Platforms [4]. In general, GP principles atetiad to any single formal
language. The GP methodologies may be used to evolve seftwdrardware solutions
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Parents

Children

Figure 3.4 The crossover operation performed on two parent treestkatentical.

Mutation Point

Figure 3.5 The mutation operation performed on a single individual.

using any of many existing languages and frameworks. Figueonveys the general
structure of the evolutionary process utilized in genetagpamming [73].
In order to achieve and maintain the structure of the syntegstrepresenting the
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Figure 3.6 Genetic programming flowchart.

individuals being evolved, the GP platform needs to mamsaveral collections of ob-

jects. Those collections allow for the platform to accusabelild and maintain the syntax

trees. In addition, the evaluation methodologies for th&esy components are speci-
fied for each of the collection types allowing for the exeontof evolved programs and

the measuring of their performance. The following collecs are maintained by the GP
platform:

e Functions: All the primitive functions to be utilized in the building dfe genetic
programs must be included in this collection. The definibdreach function in-
cludes the method through which the function is evaluatededsas the number of
parameters that it operates on. Some functions operateingle parameters, while
others may operate on two or more. The specification of thebeuwf parameters
allows for the tree-building component of the system to trres the program-trees
utilizing correct functional representations.

e Terminal variables:This collection includes all variables to be used as pararset
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for the specified primitive functions. The variables to b&zadd in the evolutionary
process can be of any type; hence, the type of the variablekhssvthe range of
values it is capable of storing must be included. The spetifin of the data type
allows the system to properly match variables to randomcsed functions being
inserted in the syntax tree.

e Terminal constants/Any constant value that is to be used as part of the evolved
programs will be added to this collection. As with terminakiables, the data
type of each constant must be specified to allow for the apm@tgpmatching of
constants to functions.

e Nodes: As the syntax tree is being built, the nodes collection keegpsk of all
entities being inserted in the tree. Each node may repraskmiction, a terminal
variable or a terminal constant. A reference to the node maxt) a link to the
parent node, as well as links to children nodes will be inetid

e Links: Each link present within the syntax tree will be added to toikection and
given a unique numeric identifier. Both the crossover andatiari operations rely
on the selection of random links in order to perform treerattens. The existence
of this collection facilitates the genetic selection artdration as each link contains
a reference to the parent node which represents the rooé cutt-tree to be used
in the alteration process.

The first step in the evolutionary process is to create theagynees for each individ-
ual in the initial population. Trees are generated randdiylghoosing elements from the
preset function, terminal variable or terminal constafiections. If a function is chosen,
the children nodes of the function node are created depgmfirthe number of parame-
ters needed for the function. The creation mechanism thegresses down to each child
choosing random elements to satisfy its own processingsheeu so on. A height re-
striction may be applied to prevent the tree from growingdmelya specific height. For
example, if the maximum desired height is 5, then once tleereaches a height of 4, only
a terminal may be chosen in order to halt the vertical treevtiro The tree population
process continues until all leaf nodes consist of terminals

The evaluation of each tree is performed recursively sigdt the root then traversing
the tree downwards resolving parameter values. For exagipkn the syntax tree shown
in Figure 3.7, the evaluation process starts at the root (roatke 1). Since node 1 contains
the addition function (+), which requires two parametdus,grocess moves to node 2 in
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Figure 3.7 Evaluation of the syntax tree.

order to retrieve the value for the first parameter. Node 2atog the terminal variabbe

so no further resolution is needed for this parameter. Nodee8aluated next to retrieve
the value for the second parameter. However, since the ratains the multiplication
function (*), the process continues to nodes 4 and 5 to kettigeir values. Since nodes 4
and 5 are terminals then the process terminates. The nodesvate propagated upward
in the tree until a final solution is reached. The evaluatimtess ultimately formulates
the following solution to the tree:

X+ X*x9 = 10x

3.5.1 Data Fitting

In this section, we provide an illustrative genetic prognaimg process that tries to find a
data fitting equation given a set of data points. For eaclagyin¢e, the associated fitness
is evaluated based on the total error that exists betweesethef data points and the tree
representation. The set of data points is shown in TableaBd the associated graphical
representation is shown in Figure 3.8. The main task for loduonary process is to
find a syntax tree whose evaluation yields the smallest éotal in relation to the original
data set. The fitness functidnfor individuali is given by

fi= S [trea (k) - p(k)| (3.)
k=1

wheren is the number of data points, p(k) is the data value at peositie- k, and
treq (k) is the evaluation of the syntax tree of individuidbr the valuex = k. The set of
functions F, terminal variables V and terminal constantseCgaven by
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f(X)

0.94
-0.98
-2.4
-1.70
1.234
3.05
1.39
-0.71
-2.73
10 -2.95
11 0.01
12 2.92
13 3.57
14 0.11
15 -2.44

O©oOoO~NOOULS, WN R X

Table 3.1 Set of data points for GP fitting.

4 T T T T T T T

f(x)

3 L L L L + L L
0 2 4 6 8 10 12 14 16
X

Figure 3.8 Graphical representation of the set of data points for GiAdit

F={+,-,*/,SIN,COS, TAN,SQRF
V={x}

C={R} range = [0,15]
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The population size of each generation should be chosea &argugh to allow for
sufficient diversity in order to achieve reasonable perfomoe and eventual optimal con-
vergence. The population size is usually chosen to inclhdadands or even millions
of individuals. The larger the functional and terminal cament set, the larger the pop-
ulation should be. For the purposes of this example, we osé/ four representative
individuals to illustrate the progression of the evoluaonprocess. Table 3.2 shows the
four syntax trees, the plot of the functional representatibeach tree along with the plot
of the data points. Table 3.3 shows the fitness value of eatttedbur syntax trees using
Equation 3.1.

_
RS D D

O O G

Figure 3.9 The crossover operation performed on syntax trees (b) @ngé€lding the
tree representation of equatioagx) * v/X.

A crossover operation performed on syntax tieesdc (Figure 3.9) yields the func-
tion cogx) * /X which represents an accurate data fitting function for tivergidata.
Table 3.4 shows the final fitness value achieved by evalutiegesultant syntax tree.
The graphical representation is shown in Figure 3.10.

3.6 Limitations of Genetic Programming

Genetic programming offers a more flexible approach tharetiyealgorithms due to its
ability to develop a method for solving a problem instead pbant solution. However,
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180 10
160 |- 8|
140 6
120 4+
100 |- 2
Z 80 E of
60 - 2+
40 4
20 6
oF v, . T e e T -8
20 . . -10
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2
al
3l
2
4l
5 . . . . 3 . . " . .
0 2 4 12 14 16 0 2 4 10 12 14 16

(c) {vx— 6}

(d) {x/8}

Table 3.2 Four representative syntax trees, the plot of the funatiogpresentation of
each tree, as well as the plot of the original data points.
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n
Function fi= Y |treq(k)— p(k)|
k=1

(d) 7+11x 1,425.69
(b) cogx)#9 55.18
() vXx—6 49.69
(d) x/8 30.89

Table 3.3 The fitness evaluation of the four representative syneestr

n
Function  fi= Y |treq(k) — p(k)|
k=1

cogX) * /X 5.58

Table 3.4 The fitness evaluation of the syntax tree representatico®k)  /X.

the unified representation of the genome and phenom utibyettie framework causes
significant drawbacks. The main structure of GP-based &woluesults in the following
limitations:

e The solutions produced by genetic programming tend to thviards larger and
slow solutions on average [114]. Hence, a solution mightitseately reached, yet
no guarantee exists that the presented solutions is thegfiiastnt.

e As the complexity of the solution increases, the reproductf results becomes
very difficult to achieve by applying modifications. Minoraiges in the syntax
tree could result in major changes in its associated funatigepresentation.

e Genetic programming also suffers from the possible presefidnsufficient di-
versity and the possibility of reaching sub-optimal resi80]. This possibility
increases significantly as the size of the search spaceasese
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f(x)
o

Figure 3.10 Final data fit using functionogx)  v/X.

e Most significant results produced by GP frameworks wereinbtithrough the uti-
lization of massive parallelism in order to achieve the pssing power necessary
for computing solutions within a reasonable time frame. IfB@uirements make
the framework usage possibly prohibitive from a practiesise.

3.7 Gene Expression Programming (GEP)

Ferreira created Gene expression programming (GEP) [3Xldazome some of the lim-
itations of GP. The main contribution of GEP is in its repreagonal separation. GEP
allows for the separate representation of the genome anabphewhich facilitates the
performance of the genetic operations without losing thelfikty of evolving a method
for solving the problem instead of a point solution. The garas structured as a linear
symbolic string of fixed length and is converted to its asstecl expression tree (ET) rep-
resentation utilizing a specialized language known as &abBespite the fixed length of
each symbolic string, different length expression treaddcbe produced depending on
the structure of the string.

Consider the gene representatgrof the function seF, variable seV and constant
setC:
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F={+1-1*1/}
V={a,b}

C={R} range = [0,5]

The following is an expression string representatiog:of
++*ab3+a+4

The translation from an expression string to an expressamdtarts at the left most
symbol in the string which represents the root of the treee pfocess then moves to
the right populating the parameters of functions placedaahdevel until all function
parameters have been populated. Figure 3.11 shows thessiprdree for the above

expression string.

Figure 3.11 Expression tree representation for the expression stringjab 3 +a + 4.

The expression string of a gene is divided into two parts. fiflsepart is the head,
which is composed of functions and terminals, while the sdquart is the tait composed
only of terminals. The length dfis a function ofh following the formula

t=h(n—1)+1 (3.2)

where n is the number of arguments of the function of the lgasyument count.
Using the sets F,V and C, we define another ggdescribed by the string

01 2 3 456 7 8 9012 3 456
/ a *+ [/ *b 9 * 3 a ab b 3 al
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In the string listed, the length &f= 8. Givenn = 2, the length of = 8(1)+1=09.
Although the gene contains seventeen symbols, only theréq@esentation determines
the last symbol actually utilized. Figure 3.12 shows theesentation for the string given.
The figure demonstrates how only thirteen symbols are atllin the expression tree.

Figure 3.12 Symbol utilization in the expression tree.

As crossover and mutation operations cause alteratiortgetexpression string, the
number of symbols being utilized varies depending on thegire of the resultant string.
For example, given a mutation operation that changes thik symbol from a 3 to a,
the resultant string will be structured as follows:

012 3 456 78 9 0123456
/[ a *+ [/ *b 9 * + a a b b 3 a1l

The expression tree of the modified string is shown in Figut8.3We notice that the

height of the tree has grown as thesymbol replaces the 3 at the tenth position. We also

notice that the number of utilized symbol has grown from 1350

3.8 GEP Genetic Operators

One of the main advantages of GEP lies in its ability to acceptmon genetic operators
as they are normally performed on linear chromosome strifigs separation of the chro-
mosome from its tree representation allows for geneticaipes to be applied directly to
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Figure 3.13 Altered expression tree after applying the mutation ojpera

the expression strings without having to take the expradsee into consideration. In ad-
dition to the regular GEP selection methods, which are idehto the selection methods
utilized by GA and GP , the following are the main genetic epers used in GEP:

e Mutation
e Recombination
e Transposition

As long as the expression string rules for the head and taitsiring are followed, GEP
guarantees that any alterations done to the expressioig $iyi using any of the genetic
operators would still yield an expression tree that is $tmadly correct.

3.8.1 GEP Mutation

The Mutation operator may be applied to any part of the chsmme without violating
any of the organizational rules. The symbols in the head neagxchanged with any
function or terminal. However, symbols in the tail may onky éxchanged with termi-
nals. A mutation parametgy, is usually used to determine the probability of mutation.
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GEP does not impose any restrictions on the number of matgper chromosome, and
any number of mutations should still produce a structuredigrect expression tree [37].
Figures 3.12 and 3.13 show the before-mutation and aftéation tree representations
of the string
0123 4567 89 012 3 456
/[ a *+ [/ * b 9 * 3 a ab b 3 a1l
Although the mutation only changed a single symbol (at timhtéocation), it be-
comes evident how the mutation operator can cause dragi@@bns to an expression

tree increasing or decreasing its depth and possibly chgritgi structure.

3.8.2 GEP Recombination

GEP recombination is comparable to the GA and GP crossowratgys where two indi-
viduals are selected and the genetic material is swappagbatthem. A recombination
probability parametep, may also be used to determine the frequency of recombirgtion
taking place. GEP utilizes three different types of recambons:

e One-point recombinatiountilizes a single random mutation point and all the genetic
material starting at this random points is swapped betwieetwo individuals. For
example, given the following two individuals:

1 2 3 456 7 8 9012 3 456
a * + / *b 9 * 3 a a b b 3 al
* /| + b 3 a b aab5 1 a2 a

A random mutation at location 4 would yield the following twbromosomes:

w

56 78 9 0 1 2 4 5 6
a 3 a b a a b 5 a 2 a
*p 9 * 3 a a b b 3 a1l

+ -o
o

2 3
* 4
/| +

\U-h

e Two-point recombinationtilizes two random mutation points instead of only one.
The genetic material between the two points is swapped leetiree individuals.
Given the original two individuals shown above and the twaprebination points
at locations 2 and 9, the resultant individuals would becstmed as follows:

2 4 5 6 7 8 9 01 2 3 45 6
/ b a 3 a b aaab b 3 a1l

3
+
+ / *pb 9 * 3 a b 5 1 a 2 a

+ -~o
* o

*
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e Gene recombinatiors used when the chromosome is partitioned into severalsgene
The genetic material is then swapped along the boundareesaiplete gene cho-
sen at random. Consider the following two individuals deddnto two separate
genes as follows:

0 1 2 3 456 7 89 0 1 2 3 456 7 89
/ a * + | * b 9 * 3 a a b b 3 a1l b a 2
+ * / + b a 3 a b a a b 5 1 a 2 a 4 0 a

A gene recombination of the second gene would yield theviolig resultant indi-

viduals:
0 1 2 3 456 7 89 0 1 2 3 456 7 89
/ a * + | * b 9 * 3 a b 5 1 a2 a4 0 a
+ * / + b a 3 a b a a a b b 3 a1 b a 2

Utilizing only gene recombination without using other ntida or recombination
methods limits the evolutionary process as no new genesl @@utreated. In this
case successful evolution would be dependant on the sizeeqidpulation as an
extremely large population would be the only means for hjpenough genetic
diversity among individuals [38].

3.8.3 GEP Transposition

GEP transposition operates on a single chromosome randakilyg a section of the
genetic code and duplicating it to another part within theesahromosome. In essence,
the operator duplicates some of the genetic material wititergenome, and at the same
time, another part is deleted (replaced by the transposgidise For example, given the
following chromosome

012 3 4567 8 901234516 7189

/[ a *+ [/ * b 9 * 3 a abb 3 alba?2
the section starting at positions 3 and ending at positiachosen at random to be trans-
posed. As the section is transposed downstream to posititre 8esultant chromosome
is as follows:

012 3 456 7 8 901234516 7389

/[ a *+ [ *b 9+ [/ * b b 3 aloba?2

The transposition application should maintain the headtaiidules. A function

should never be transposed to the tail section of the chromesn order to maintain the
correct structure for the resultant expression tree.
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3.9 Conclusion

Genetic programing as well as gene expression programaviga a flexible platform for
the evolution of programmatic solutions to complex proldeifhe complexity of devel-
oping articulated robotic control, however, would reqanauch higher level of diversity
than what GP and GEP could offer. The use of massive pasafielllows for the utiliza-
tion of very large populations of possibly millions of indiwuals, yet such computational
power is not readily available in dynamic learning envir@mts. Due to such limitations,
the possibility of reaching suboptimal control strategseguite high due to the very large
search space present. In order to utilize genetic methadbdasuccessful development
of robotic controllers for complex articulated motion cat constructs are needed for
the intelligent bounding of the problem search space. Saoktoucts would decrease the
time needed to reach a solution and also decrease the pibgsibreaching suboptimal
results.



Chapter 4
GUIDED GENETIC EVOLUTION

4.1 Introduction

In this chapter, we formally define tHeuided Genetic Evolutio(GGE) platform. The
platform introduces new concepts for the evolution of aatoous robotic controllers
for the real-time control of articulated structures. GGHdsiupon genetic programming
methodologies with the inclusion of specialized algorishfior the evolution of articulated
robotic controllers and guiding the evolutionary processrder to achieve faster conver-
gence time and minimize the possibility for suboptimal @ngence. Genetic guidance is
achieved through the minimization of the problem searcleesjy reducing the problem
parameter count and applying constraints to the evolutjopeocess while maintaining
the genetic diversity within the population.

Guided genetic evolution is motivated byitation-based learningrinciples, yet it
circumvents the current existing limitations that rendestsprinciples unachievable in a
practical sense. The framework allows the designer to purate articulation patterns
and constraints to be followed by the agent on an imitatissbarhis approach guides
the genetic process by biasing exploratory moves towame$giined areas of the search
space. Since the evolutionary constraints are presentad explicit sense, theorre-
spondence problerssociated with the imitation process does not apply.

The GGE platform allows for the expansion of the evolutigraiocess into a higher
more complex level where comprehensive state determmatiad transitioning may be
achieved. Complex states may be obtained through the gemailution of complex
action sequences. GGE includes constructs for the speinficaf the agent’s genetic
structure as well as the guidelines for the evolutionarj p&onstructs for the specifi-
cations of the concurrency of execution threads are alssepten the genetic process in
order to maximize an individual’s fitness through the dyraaptimization of execution
sequences.

Several types of constraints may be applied to the genatimegs in order to achieve
the desired evolutionary guidance. The level of commitneriny of the specified con-
straints maybe predefined or managed dynamically as thé'sgemironment changes.
The evolutionary process aims to optimize the constrainarpaters in order to maxi-
mize fitness. Such optimizations may be achieved throughinigabefore the agent’s

61
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life cycle begins, while others maybe developed throughueeof dynamic optimization
techniques during the agent’s life cycle through the irdoa between the agent and the
environment.

4.2 Genetic Structure

In this section, we discuss the general genetic structiseceaged with the GGE plat-
form. Further formalization of the different structuralnstructs will be discussed later
in the chapter. The GGE platform is based upon genetic pnogpiag principles; hence,
the learning methodologies utilized are based upon thetigeseolution of individuals
over multiple generations until the system converges tosarelt level of performance.
In addition to the evolutionary constraints applied to tlemetic process, core genetic
operators are applied to each generation of individuatsvatig the overall fithess to pro-
gressively increase over evolutionary time. Figure 4.1 alestrates the overall genetic
process utilized for the structured evolution of indivithua

Initialize Gen 0

.

» Ewvaluate Fithess

¢ Tes
Terminate? »  Report Result
# Mo v
Select Mext End
Creneration
{roulette wheel)
RCGA Crossover l l RCGA Mutation
For Each Twao For Each Indiridual
Indriduals
L J L
Petform Crossover Petform Mutation

. y

Figure 4.1 Overall genetic process utilized for the structured etiofuof individuals.

Real coding (RCGA) is utilized for the representation ofacthosomes, so the genetic
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operators utilized are geared towards the manipulatioeafvalued parameters. Three
main reasons motivate the use of RCGA in guided genetic ggatu

e The nature of the robotic control problem requires the usesalvalued param-
eters. RCGA utilization facilitates the structuring of thenetic process as the
genomes represent actual parameters that are appliethydioeeards a solution.

e The size of the search domain for the control problem is Samtly large. The
use of RCGA methodologies allows for the exploration of teeogiated domain
without loss of precision.

e The optimization of the different control strategies reqsithe utilization ofyrad-
uality in order to progressively achieve more optimal results. RGGethods are
most apt for achieving the required gradual fine tuning objem parameters.

4.2.1 Initialization

The first generation of individuals is initialized using ar@ly random process to guar-
antee an even distribution over the target search spacen ginat the population size
is of an appropriate size On the other hand, if the population size is limited, a non-
clustering method is used to promote the needed populatiensity. The presence of an
appropriate level of diversity within the initial populafi greatly affects the solution con-
vergence speed as well as the quality of the results. Thalinétion process is structured
to follow the evolutionary constraints placed on the genptocess; hence, prior to the
application of any genetic operators, individuals are @ihinn areas of the search space
that maximizes their chances of achieving significantlyhbigfitness values. Such selec-
tive initialization also significantly decreases converggetimes as individuals are leaped
forward on the evolutionary scale as they are placed inaelgareas of the search space.

4.2.2 Selection

GGE utilizes ditness-proportionate selectionethod based on theulette-wheekelec-
tion principles. Once the fitness of each individoais evaluated, the following formula
is used to calculate the selection probabikty;):

o)) — _8L1(e)

= (4.1)
> 0(f(c)
k=1

1The significance of population size is directly related ® thature of the problem.
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wheref (cj) is the fitness value for individual, mis the number of individuals in the
generation, ang : R — R is a non-decreasing transformation used to shift the fitness
values toR ™. The transformation is performed only for selection pugsosithout vary-
ing the reported fitness values. This guarantees the atalityonitor the unaltered fitness
of individuals and the population as a whole from one gerardb the next.

In some instances, a need exists for reversing the respitababilities. For example,
if the goal of an experiment is to keep a robotic agent as dodbe point of origin
as possible, then either the fitness function would have tonesely proportionate to
the distance from the origin, or it may be proportionate ®distance and a probability
reversal may be applied to produce correct selection seslitie formulate for probability
reversal is defined as

P(cj) = o)) 4.2)
> (1-P(c))

k=1
Althoughfitness-proportionate selectidands to favor individuals with higher fitness
values, the process does not eliminate the possibility letCsag individuals with lower
fitness. This deviation from pusditist selectioR acknowledges the need for the applica-
tion of comprehensive randomness in the evolutionary m®aEs the eventual selection
of individuals with low fitness is an essential componentia $ystem exploratory strat-

egy.
4.2.3 Crossover

The GGE crossover operator uses RCGA methodologies totaéerenetic encoding of
individuals. The operation promotes the replication ofidéxe traits among individuals,
as it operates on two parent individual swapping genetienatbetween them in order
to produce offspring. GGE utilizes the BLXo- RCGA crossover operator, which allows
for the problem parameters to be gradually focused by setget random gene value
from the expansion of intervéhin(xt, x?), max(x}, x?)] wherex! represents geridor the
first parent individual ana? represents gerigfor the second. This method allows for the
expansion of the selection interval by an expansion parmraefThe BLX - a crossover
interval is defined as

[min(xt, x?) — 1 - o, max(x, x?) +1 - a

2Elitist selection guarantees the selection of the mostdividuals of each generation.
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Where
| =max(x', ) —min(x', x)

The a parameter is problem specific and must be chosen carefuliyidw for the
gradual expansion of the target domain without deviatimgnftthe evolutionary results
already achieved. The dynamic management ofitiparameter is included in the GGE
framework. An initiala value is chosen taking into consideration the overall ravige
possible values allowed for the specific parameter to bevedolThe parameter is then
gradually decreased as evolution proceeds in an effortrtbdufocus the results. Let
Omaxbe the maximum generation number desigeid, the current generation number, and
Omin and 0max are the minimum and maximuin values respectively, the dynamically
managed BLX -« interval is defined as

g- (max— Omin)

Omax

[min(xil,x,-z) —1- (meax—

) s 141 (s & =)

Omax

The valuesimin andomax maybe predefined by the designer, or they maybe automat-
ically generated by the GGE platform as a percentage of theclselomain size. The
o value may still be fixed over all generations by supplyingghme identical value for
Omin andOmax

4.2.4 Mutation

In order to guarantee continued population diversity, GG&slta mutation operator that
alters the genetic encoding of individuals on a singulaisbesying on a predefined
mutation probabilitypy,. The mutation operator allows for the evolutionary prodess
take exploratory moves into areas of the search space thahawe not been explored
previously. Such moves prevent any area of the domain frangbmut of evolutionary
reach. It also reduces the probability of suboptimal cogeece and increases the quality
of the results. Them value is problem specific and must remain small in order tegimes
evolutionary results while still exploring different aseaf the search domain. In addition
to the mutation probabilityr,, the mutation operator requires the two valuegs, and
Mmax defining the bounds of the target domain for the specific gdine. random value
r is chosen from the intervainmin, Mmay. Non-uniform mutation is then applied to the
chosen geng with probability pm following one of the following two formulas:

C{ZXi—l—A(t,bi—Xi)
C{ZXi—A(t,Xj—ai)
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At(t,x) = Xx- <1— r<1_9miax)b>

As the generation numberapproachegmax the impact of the random valueon the
gene decreases. The valuenay be used to increase or decrease the significance of the
generation number in the application of the mutation operat

where

4.3 Trigger Networks

In this section, we present a new type of connectionist netwmodel labeledTrigger
Networks or T-Nets developed as the representational core of guided genatiaten.
This connectionist model is the main representation veHiat the encoding as well as
the evolution of agent control strategies. T-Nets allowtha representation of all aspects
of the control problem in an evolvable manner. Genetic @imiumethodologies are then
applied to the model in order to optimize the control stratby altering the problem
parameters until the predefined fitness criteria has been met

Trigger networks utilize a hierarchical structure linkingultiple levels of subnets
using evolvable links. The hierarchical representatiéoved for the structuring and evo-
lution of complex behaviors based on simpler actions an@viehs represented by other
parts of the network. Although guiding constructs are used amechanism for reduc-
ing the complexity of the problem search space, the essdrtbe evolutionary process
remains intact allowing for the genetic optimization teicjues to structure the network
according to the performance of individuals without anyeemal intervention beyond the
initial design.

Figure 4.2 demonstrates the general evolutionary cycleigder networks. The de-
tailed description of a robotic agent is encoded as a triggework which represents all
the actions the agent could execute as well as all the pesslidtionships that govern
the execution of such actions. Each encoded trigger netvegriesents a control strategy
to be utilized for agent control. The performance of eadyger network is evaluated
through the use of one or more fitness functions which playieiakrole in the selective
evolution of network populations.

Several essential building blocks are utilized as contriodoe combined as an evolv-
able trigger network. A T-Net can be structured as simple simgle action to be per-
formed by an agent or as complex as hundreds or even thousasdbnetworks rep-
resenting different behavioral strategies and combingdtteer into a single agent con-
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Figure 4.2 Trigger network evolutionary cycle.

troller. The following sections describe the differentrents that represent the core
building blocks utilized in the construction of trigger netrks.

4.3.1 Action Nodes

Action nodegepresent the set of primitive behaviors performable by gena In an
articulated robotic structure, a primitive action représehe actuation of a joint motor
setting the joint bodies at a specific relative angle. In TsiNan actiorg; is represented

by the following symbol:

wherei is the unique ID of the action being referenced.

Each action represented within the network carry sevetafmal evolvable parame-
ters used in the evolutionary process in an aim to optimizeopmance. For a primitive
joint motor actuation action, the internal evolvable paggens are as follows:

e The target angle vector to be reached by the joint. The valuihis parameter has
to fall between the low and high constraint vectors placedhenjoint at design
time. The number of vector elements depends on the numberfitlized by the
joint.

e The maximum torque vector to be applied to the joint bodidgs parameter rep-
resents the strength of the motor,ouscle in control of the joint.
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e The maximum allocated time duration for the completion efdlesired action. This
parameter represents the urgency associated with actmoigon.

e The input trigger vector array which determines the inpigigeer points for the
node.

e The output trigger vector array which triggers the executd other dependant
actions.

e The priority value used to determine the node priority lewetelation to other
simultaneously executed entities within the network.

4.3.2 Trigger Vectors

Trigger vectorsare used to represent dependencies as well as executia@nsaggwithin
the network structure. Any complex action performed by aenagonsists of multiple
primitive actions executed using a specific concurrencysaggdiencing structure. Any ac-
tion may contain zero or more trigger vectors connectedHeraiction nodes demonstrat-
ing execution dependency. A trigger relationship is dertratesd by an arrow connecting
two nodes. Figure 4.3 shows multiple possible trigger ve@presentations.

Figure 4.3 Trigger vector representations. Left: trigger depenglei@ctionb on action
a. Middle: trigger dependency @fonb. Right: no trigger dependency present.

The direction of the trigger vector, determined by the sigthe vector magnitude
value, demonstrates the dependency present betweensadiltmmagnitude of the vector
determines the trigger point relative to the execution tiomeof the trigger source action.
Given the dependency of actidmon actiona, if a has a total associated time duration
ta, then the magnitude of the trigger vectowould determine the point in time when the
trigger becomes active. |f| = 0.5, anda is triggered at timeyp, thenb is triggered at
timetg+ 0.5t,.
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Trigger vectors may also be utilized to commence the execsitdf actions simulta-
neously. A vector magnitude of zero would cats® trigger as soon asis triggered.
Similarly, actions may be executed in succession by sefing 1. In this caseb would
commence immediately afterhas terminated. Settirg| > 1 would cause a delay after
the termination of beforeb is executed, and the delay is defined as

ta- (V[ - 1)

Each action noda contains an input vector array label®EC referencing the source
nodes on which a dependency exists. In order for an actionrtor@nce execution, all
IVEC elements must be triggered by their respective souodes Let actior hold an
IVEC array of length two containing the two entrigsandyv; referencing the action nodes
b andc respectively. This relationship means that actéas dependant on bothandc
in its execution. In other words, bothandc must triggera based on the magnitude of
their respective trigger vectors, and only then raasjart its execution cycle.

We define the flueri X to state the executability of any action within the envir@amn
The array iVEC holds triggering information denoted by aZer each element awaiting
atrigger signal from the source node and a 1 if the triggeradigas already been received.
The fluentE X is defined as

lavec]

va,EX(a) = | > avec(k) =lavec| (4.3)
=1

Each action noda also contains an output vector array labe®dEC that holds
trigger information for other nodes that has dependencyg. déach element odV ECis
an independent entity that holds both a reference to thettaage as well as the trigger
magnitude indicating the desired trigger point. The elemare continuously processed
during execution, and once the trigger point has been relathe associated target node
is immediately triggered. Figure 4.4 shows several possileppendency configurations
demonstrating multiple action nodes and trigger vectors.

4.3.3 Root and Relay Nodes

Root and Relay nodemre a special type of action nodes. The nodes do not contain an
internal executable action. A root node is unique, as ittifies the entry point for ex-
ecuting the entire trigger network. Each trigger network/roantain only a single root
node which holds anV ECarray connected to other relay or action nodes which are to be



CHAPTER 4. GUIDED GENETIC EVOLUTION 70

Figure 4.4 Multiple T-Net trigger connections. Lefta is triggered by both andc.
Middle: a triggers botho andc. Right: a triggersb, andb triggersc.

triggered at the beginning of the network execution cyclewkelver, the root node does
not hold anVV EC array, since it is triggered directly to commence netwomogtion.

Relay nodes hold aiv EC array which receives trigger signals from other action or
relay nodes. They also hold av ECarray for triggering other actions. Usually, a relay
node is utilized as a subnetwork header. When a subnetwpré&gsentative relay node is
triggered, it initiates the execution of the entire behavidie oV ECelement magnitudes
are then utilized to determine the trigger points for thecexien of individual actions
within the subnetwork.

The network root node is represented by the following symbol

/\

The relay node; is represented by the following symbol:

Py

Once a particular behavior has been genetically achietiedsubnetwork associated
with the behavior may be represented graphically using ibmhyeader (relay node) repre-
sentation. As the number of behaviors increase, such cdrdisatay allows for the visual
simplification of the network. The same principles are fakal as multiple behaviors are
combined into a single complex behavior, as the end resyltaisa be represented using
a single relay node.

4.3.4 Reset Nodes

Reset nodes are also a special type of action nodes that domtain an internal action to
be executed. However, a reset node is responsible for reguttme state of the network to
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an initial state that existed before the network was firggiered. The utilization of reset
nodes is crucial to the execution of cyclic behavior withie network. For example, in
order for a biped robot to execute a walking behavior, thenaggetrained to step with
one leg, then the other, then the whole process is repeatathteve the desired goal of
walking.

The network reset node is represented by the following symbo

©

A reset node may be used to reset the network then triggeothi@ode to commence
network execution once more, or it may be used to trigger aispeelay node in or-
der to cycle through a specific behavior while the rest of tbsvork follows its normal
execution path.

4.3.5 Subnetworks

A subnetwork is a part of a trigger network that represent®amng of primitive actions
combined into a single behavior. A complete subnetwork eestiby the relay node
is shown in Figure 4.5. An unguided subnetwork represergidgsired behavior would
initially contain the following elements:

e Action nodes representing all possible primitive actioag@mable by the agent.
Without the presence of genetic guidance, a T-Net has no leggs of which
actions might contribute towards the fulfilment of a parécgoal or the execution
of a desired behavior. Hence, all possible actions are @geclin an aim that the
self-organization genetic process would eliminate i@ nodes.

e Trigger vectors connecting all possible two-node groupiafjactions in both di-
rections. Although not all trigger vectors will be needeuk unguided network
has no way of knowing which of the vectors would eventuallyrélevant to the
achievement of the desired goals.

The evolutionary process itself aims to eliminate irretextaigger vectors and action
nodes along the evolutionary path. As particular actiordeprendencies within the sub-
net prove unnecessary or counter productive in relatiohécachievement of a desired
goal, the nature of the genetic process helps eliminateenuitties while maximizing the
overall fitness of individuals. As thggec elements of a particular action node are all elim-
inated, the action becomes irrelevant as it will never bewaezl during the agent’s life
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Figure 4.5 Representation of the subnetwark

cycle. Hence, this particular action may be removed witlamytimpact on the behavior
of the network.

1 I3

DTG [x] GG

C1 C3

2 ()

c2

Figure 4.6 Connectivity of multiple subnetworks within a single wey network.

Figure 4.6 shows a more complex representation of a T-Nesistimg of the three
subnetworks, r, andrz. The figure demonstrates the structuring of complex behavio
based on simpler behaviors that consist of several prienéstions executing simultane-
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ously. This hierarchical structuring may be utilized inlding more and more complex
behaviors based on more primitive subnetworks.

4.3.6 Concurrency

A typical rigger network may have several actions execusingultaneously at any given
moment in time. A priority value is given to every action oftaxenode in order to de-
termine nodes priority level over other actions executintha same time. For example,
given that being balanced is a current goal the agent is pugsilnen no action execution
should be allowed that would affect the agent’s ability tomaén balanced. Hence, all
posture alterations has to be performed prior to the balgnioehavior being executed
in order for the system to correct initiatives that would aagely affect its high priority
balancing goal.

The trigger network consisting of the two subnetworksandr, is shown in Fig-
ure 4.7. Each relay node contains its priority vapugenoting its priority level relative to
other concurrent executions.

Figure 4.7 Trigger network consisting of the two subnetworksandrs.

Once the network root node has been triggered, it will cabserimediate and si-
multaneous triggering of both subnetwom¢sandr, given that the magnitude of their
associated trigger vectovg andv, are both zero. A vector magnitudehat is greater
than zero causes a delayofinits before the associated action is executed. This delay i
useful in achieving execution strategies involving acsi@rhich require different starting
points.

The two subnetworks execute independently in an efforesehtheir respective goals.
However, prior to each execution cycle, the subnetworkssareged according to their
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priority values to determine the execution order of eachabiem 3. Subnetworks with
the lowest priority execute first giving higher priority kahors the ability to correct any
negative effects caused by previous actions. Similartypas within any subnetwork are
also given priority values to determine their own execuboaer.

In the example given, having a priorify= 0, subnetwork, executes first by issuing
its associated actuation commands in order to achieveliasv@ral goal. Subnetworiy,
having a higher priority, then proceeds to issue its own camuis correcting any negative
actions that might have been issuedrpy

4.4 Action Types

Several action types may be utilized as part of the overailtrobstrategy. The types of
actions used depend on the specific behavior being impledemd the associated be-
havioral goals. An action may consist of a primitive commaethg issued to a specific
joint, or it may contain a more complex algorithm for mainiag a certain configuration
of joints over a period of time. Actions themselves are aiggect to evolutionary alter-
ations in an aim to achieve the most optimal command or algordefinition to be used
for solving the control problem.

4.4.1 Direct Joint Control

The first type of action to be discussed involves sendingrobsignals to a specific joint
forcing the joint into a particular configuration. The conmdas typically given as a
combination of the desired joint angles for all axis corewlby the joint as well as the
urgency involved in achieving the target angles. The foilmtypes of direct joint control
signals are available:

e Hold: This command prompts the rotation of joint bodies in ordeadhieve the
desired angle given. The torque applied to the bodies waeped on the urgency
associated with achieving the desired configuration. Trgeanector specified
would be held by the joint until a different command is givhattrequires a differ-
ent configuration (Figure 4.8). A resistance parameter eyl used to specify
the maximum amount of torque allowed for maintaining thgeaangle.

3Although execution ordering exists, it does not imply aryusncing relating to the subnetworks unless
direct trigger vectors exist between them. The executiaermng, however, decides on the order for the
application of low level action commands or actuation signa
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Figure 4.8 Direct angle control of a specific joint axis.

e Free: A joint would usually be given low and high stop points depegdn the
constraints of the articulated structure jont-free command maybe issued for all
axis controlled by the joint or for any single axis. The conmeh@rompts the agent
to remove any constraints placed on the joints except foldtveand high stop
points restricting the rotational motion of the bodies.

4.4.2 Joint Control Strategy

As an expansion of joint control, more complex localizedlgoaay be embedded within
an action node along with a strategy to achieve it. For exampthe desire is to elim-
inate the moment due to gravity in relation a particular atie associated joint may be
invoked to perform continuous joint adjustments until thesided balance is achieved.
For example, if an agent is on a slope at the time of behaviezwgion (Figure 4.10), the
exact target angles for keeping steady balance are not kriewever, the proper angles
may be determined by following an overall strategy to redheemoment on the body.

Chofimam
Angle

Angle
Adjustment

Angle
Adjustment

1

Figure 4.9 Joint control strategy for a body balancing behavior.

Several control strategies may be used in combination ti@eela desired effect. The
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following list identifies some of the possible strategiesahttould be applied as part of
a behavior:

¢ Eliminate moments about one or more axis of a particular body
e Maintain primary normal vectors of a particular body in atagr configuration.

e Maintain even contact between two bodies; for example, weadeaire to maintain
even contact between the agent’s foot and the ground. As ewearpressure dis-
tribution is sensed, corrective measures may be taken tstatije position of the
foot.

4.4.3 PID Control

PID control is a very effective method for producing contakput signals for guiding
a control process towards a specific target. PID stands fgpdPtional, Integral, and
Derivative, and the three terms represent the three phasiesdifor the calculation of
corrective control signal. Each of the three component pllayimportant role in the
overall control strategy utilizing and acting on differguairts of the control process.

Flant
b
SEMEOY Comirol
Signals Sigrals
Y
FiD
Parameters 7] Controller
[ I'_._ ______ T T 1 :________.1__. ______ a
i Proportional 1 : Integral o Derivative !

Figure 4.10 Components of a PID controller.

PID control utilizes a continuous loop where measured adletrinput is compared
with a target reference point. The difference, or erronMeein the two values is the basis
for calculating a new output control signal in an effort tduee the error. In addition to
basing the control signals on the error value, the contralko utilizes the accumulation
of error values as well as the error rate of change in orderddyce the most optimum
and stable control strategy. The PID controller loop cdasi$three main phases:

e Sensory input relays system state,
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e Controller calculates output signal based on input valBd3,parameters, and con-
trol history,

e Controller issues output signals through control channels

The parts of the PID controller, working in unison, reactading to the present, past
and future of the control process. The three partitions af@eld as follows:

e Proportional: Reacts to the current state of the system. The process simgay
sures the current state and compares it to the desired megepoint producing an
error valuee. The output signal is proportional to the error value uskhegfollowing
equation:

Up=Kp-e (4.4)

whereup, is the proportional output signal, arkd, is a constant parameter repre-
senting theroportional gain

e Integral: Uses the history of error build-up to alter the output signalan effort
to reach the desired reference point. The integral portfaime controller helps
reduce system oscillation that may occur due to overshgdtie desired target
configuration. The integral output signalis defined as:

U = Ki/e~dt (4.5)

wherekK; is a constant parameter represenimggral gainwhich controls the sig-
nificance of error buildup in the overall control strategy.

e Derivative: Utilizes the first derivative of the error valeto measure the respon-
siveness of the system to the control signals being issuéeé. dErivative output
signalug is based on the negative constant param€ferhich representderiva-
tive gainand is defined as:

Ug = Kda (4.6)

The PID controller output is calculated as the sum of thegtlbmmtrol parts and is defined
as:
de

u:Kp~e+Ki/e~dt+Kda 4.7)

The three PID parameteks, Kj, andKq play a crucial role in determining the over-
all behavior of the controls strategy. The fine tuning of tleapeters may drastically
increase the accuracy and stability of the control systeendd, all three parameters are
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genetically evolvable for each action within the triggetwark. If an action is chosen to
be controlled by a PID controller, the PID parameters artgiried randomly, then the
genetic process works on optimizing the output signalsdasethe performance of the
control strategy. The performance is measured based onaduaéon function specific
to the type of action being carried out.

4.5 Trigger Network Evolution

The evolution of trigger networks is based on the optim@atf overall agent perfor-
mance through the fine tuning of behavior inclusion, actiaremeters, and trigger vec-
tors properties in each part of the network. Without thezagtlon of guidance constructs,
all the different network parameters are initialized usiagdomly chosen values. As
the performance of individuals within each population isasweed, gradual changes are
made to the network in an effort to optimize performance.

4.5.1 Evolution of Trigger Vectors

Trigger vector magnitudes and activation parameters agd ts determine the depen-
dency levels and properties among network componentgallpjtrigger vectors connect
all network components and their magnitudes are initidlidomly. An evolvablac-
tivation parameter is utilized for each trigger vector to allow thstegn to eliminate the
vector dependency as part of the evolutionary process. &hetig operators utilized may
alter the trigger connections in any of the following ways:

e The relevancy of a trigger vector may be altered through thaipulation its ac-
tivation parameter. If all input trigger vectors of an aotibecome disabled, the
action becomes isolated and is not used in the executioredighavior.

e The trigger vector magnitude may also be altered by the gemetcess. The vector
magnitude determines the sequencing of action executigrdasates the point in
time at which a dependant action starts its execution cyeetor magnitudes may
be altered to cause actions to start execution in synch,doession, or utilizing
any other configuration that may be applicable. The direatibthe vector could
also be altered to reverse the dependency direction betwweemodes.

The possibility does exist for the eventual presence otiarcdependency within the
network, and if such a scenario occurs, behavior progressould simply halt as action
nodes wait on a trigger signal that would never materialgech a situation takes place
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when trigger vectors follow a circular path where an actomdirectly dependant on it-
self. Figure 4.11 demonstrates the existence of such arsoehathe presented network,
actionay is triggered by an outside vector as well as another vecigmatting fromas.
Sinceags is triggered bya, anday is triggered byal, none of the actions will trigger. The
evolutionary process is not affected by the existence autr referencing within the
network. Such an event would cause the representativedudivto be rapidly eliminate
through the selection process due to the resultant low peeoce of the agent. Such
rapid elimination of the individual prevents the propagatof harmful configurations in

following generations.

Figure 4.11 Circular trigger vector dependency involving multiplgians.

We present an example based upon the evolution of a robaticantroller to demon-
strate the evolution of trigger vectors. The configuratisaspnted is shown in Fig-
ure 4.12. The robotic arm consist of a base, two arm compenantl two hinge joints
each utilizing a single degree of freedom. The goal of thdutvm process is to evolve
the arm behavior in order to move towards a target locaticghowit any predefined strat-
egy for motion.

The initial trigger network representation of the contrmdipem consists of two sub-
networks each controlling the movements of one of the joifiie most optimum strategy
should bring the arm closest to the target within predefimad tluration. The aim of the
genetic optimization process is to accomplish the follayin

e To find the best angle values for the joint control commands.

¢ To find the most appropriate trigger vector magnitudes, iwdetermine the move-
ment execution sequence.

Figure 4.13 shows the trigger network representation ofabetic arm problem. In
addition to evolving the parameters utilized within eacticar; the network layout itself
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Figure 4.12 Trigger vector evolution of a robotic arm controller.
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Figure 4.13 Trigger network representation of the robotic arm problem

is altered through the evolution of the trigger vector magies. The priority values

for both subnets are set to 1.0 as the probability for the tetmas contradicting each

other does not exist. Also, both elements of theECarray of the root node are set to
zero indicating that both behaviors are flagged for exenwtisimultaneous following the

triggering of the root node; however, the ultimate exegusitarting points are determined
by the magnitude and direction of the vecigr
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The execution sequencing of the two actions is determinethéydirection of the
trigger vector connecting the two components. The randognitizde initialization ofvg
results in an even distribution of configurations where a@etagep of individuals have
the node; triggerry, while 1— p of individuals have the trigger relationship reversed. If
a large enough population is utilized, the valuapproaches 0.5 allowing the system to
evaluate both trigger scenarios equally.

0 0
Fi ra
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Figure 4.14 Evolved trigger network for robotic arm problem.

The evolved trigger network is demonstrated in Figure 4THe process utilized a
fitness function that evaluates performance based on thieptiagimity of the robotic
arm to the target. The fitness valfigfor individuali was calculated using the following
formula:

fi = 100— d®

whered represents the final distance from the target. The arm ewalutilized 24 indi-
viduals over 100 generations. A crossowet 0.1 and a mutation probabilitp,=0.01
were utilized in the evolutionary process.

We notice that ultimately joinf; starts the execution of the entire behavior by moving
towards the target. The magnitude of vectgrevolves to a value of.68; hence, the
motion of joint j, is triggered afterj; has completed 58% of its execution cycle. An
execution duration of 2 seconds was utilized for both astiso jointj, starts its motion
1.16 seconds following join§1. The final evolved angle foy; and jo are 39 and 74
respectively. The final evolved position of the robotic amshhown in Figure 4.15. The
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evolution progression is shown in Figure 4.16 where we eaigery rapid improvement
in overall fithess over the first ten generations, then a gtgeatlual increase in average
fitness is demonstrated by the system until the maximum gdoamumber is reached.

Figure 4.15 Evolved robotic arm controller.
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Figure 4.16 Evolution progression of the robotic arm problem.

Although the most optimum arm angles for the presented prololould be numerical
calculated using inverse kinematics, the evolutionaryhogblogies utilized proves use-
ful in other problems where a numerical solution is not redté, or could be reached,
yet not within a reasonable time frame.
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45.2 Evolution of Actions

Trigger network actions are evolved towards more optimunfigarations in an effort
to achieve higher fitness. The type of evolution utilizedetets on the specific type of
action being evolved. Direct joint control actions are &eol based on their associated
joint angle as well as the urgency of action execution. Fgrjaimt within the articulated
structure, each degree of freedom is considered an indepeadtion with its own set of
parameters. Different angles and urgencies may be assoaiath different axis of the
same joint.

Joint control strategy evolution is based upon finding thetptimum control algo-
rithm based upon the functional dependency of control patars. A functional relation-
ship is determined between a desired output signal and arn signal which represents
the state of the joint or one of its characteristic functicdBsen the input valug, the evo-
lutionary process aims to select the most successful ddmtmotion f (x) selected from
the list presented in Table 4.1. The function selected deters how the input value maps
to an executable action that helps the agent achieve itseedggoals. The global constant
parameteF is scaled by the evolvable scaling parametar order to achieve the final
form of the function.

s-F-
F-
F-
F.
F-

agrwONE

S-

=S-
S-
S-

Table 4.1 Functional dependency list for the evolution of joint cmhstrategies.

The list of functions presented could be expanded to accatatecspecial types of
relationships between sensory inputs and associatechactio addition, the functional
dependency could involve multiple input values combineg@rmduce a more complex
mapping strategy.

If a joint is being manipulated through a PID controller,ritike evolutionary process
aims to optimize the PID gains in an effort to achieve the bestlts. The three gain
parameters are representediyyfor the proportional gaink; for the integral gain, and
Kq for the differential gain. Manipulating the PID parametasing the genetic process
allows the system to rapidly reach the most optimum contrakegy in relation to the
fitness function governing the evolution of individuals.
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Figure 4.17 Sphere position control using an evolved PID controller.
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A problem demonstrating PID controller evolution is presenin Figure 4.17. The
presented articulated structure consists of a base antiride itobotic armsry, rp, and
rs. The three arms are connected by three hinge jointsj,, and j3. The platep is
connected to the top most arm, utilizing the universal joint4 which has two degrees
of freedom. The sphergis placed in the center gh, and the goal of the articulated
system is to keep the sphere situated on the plate as it marasts initial position to its
target position at the opposite side of the base. As thetsteistarts moving, the sphere
immediately starts to roll out of place and eventually droffshe plate. The system aims
to fulfill two main goals:

e To maintain the sphergsituated on the plate by changing the plate angle relative to
its supporting arm. The rotation of the plate must countertiling of the sphere
by reducing its velocity and eventually moving it back to ald¢ position on the
plate.

e To minimize the average distancesdifom the center of the plate over all time steps
through out the execution of the entire behavior.

In order to achieve the behavioral goals, we utilize thréfedint actions:

e Action a; represents an evolved control strategy action resporfsibkeeping arm
rz always in an upright position as the robotic structure makesugh its different
positions. This task is accomplished by continuously narimy the deviation of
the vertical arm axis from the global vertical axis and chagghe angle ofj3 ac-
cordingly. Since a direct mapping exist between the demiadingle and the desired



CHAPTER 4. GUIDED GENETIC EVOLUTION 85

angle adjustment, the required change in the angig,d, is equal to the negative
of deviation anglé.

e Action a, represents an evolved PID controller acting on joiénd is responsible
for keepings in close proximity to the surface centerf This is accomplished by
utilizing the distancex, which represents the distance between the centeantl
the surface center gfas the input to the PID controller. The three gain components
Kp, ki, andky are evolved in order to achieve the best results. The oufghed’1D
controller represents adjustment signals that apply ahémthe angle of4.

e Action a3z also represents an evolved PID controller acting on jgintyet az is
responsible for maintaining the velocity s close to zero as possible. Although
the rate of change ir is taken into account a& calculates its output signals, a
separate PID controller with an aim to reduce the velocigegithe system a faster
response time helping maintasisituated orp at all times.

The three control actions utilized represent continuotisas whose duration spans
the entire life span of the behavior. The three actions aggdred by the network root
node, then they proceeds to execute indefinitely makingtanhadjustments until the
behavior terminates. Figure 4.18 illustrates the indepeod of all three actions as no
trigger vectors are present among them, so each actiontesdogally without triggering
any other parts of the system.

Figure 4.18 Trigger network for the sphere position control problem.

The fitness function utilized is based on the aim to maintagnglacement o$ on p
through out the entire span of motion. The function is alssedaon the total accumulated
distance of the sphere center at titng:(t), from the surface center of the plate at titne
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pc(t), over all time steps. The fitness value for each individuatversely proportional
to the total accumulated distandg:y defined as:

tmax

Grotal = t;“)c(t) —&(t)]

wheretmnax represents the maximum time step count for the behaviougxec The
evolutionary process utilized 24 individuals over 100 gatiens. A crossovea = 0.1
and a mutation probabilitp,=0.01 were utilized. The final values of the PID gain pa-
rameters for both PID actions are shown in Table 4.2.

PIDx PIDy
ko 3.97 3.71
k141 3.60
ki -4.11 -2.38

Table 4.2 Final evolved PID gain parameters.

The evolved PID controllers manage to maintaieituated onp for the complete
movement cycle. In addition, the control strategy helpsntaém the sphere as close to
the center of the plate as possible to reduce the risk ohadiif. The average distance of
s from the surface center gf over all time steps is.@6 units, compared to a maximum
possible distance of.25 units which represent half the width of the plate. The evol
tion progression of the presented problem over 50 genasabtd evolution is shown in
Figure 4.19.

4.6 Guiding the Genetic Process

The guided genetic evolution approach allows the designeletrease the size of the
problem search space by specifying boundaries that goliereviolution of actions and

trigger vectors. The guiding mechanisms provides the ¢ewiary system with a general

loose strategy for behavior execution. This is accomptighesupplying the system with

bounding criteria for the evolution of the representatiigger network. Genetic guidance
may be supplied by specifying any of the following criteria:

e General trigger network layout
e Action nodes within each subnetwork

e Ranges for joint angles
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Figure 4.19 Evolution progression of the robotic arm sphere balanpimiplem.

Ranges for execution urgency

Ranges for PID gain parameters

Ranges for execution priorities

Trigger vector connectivity for actions

Trigger vector connectivity for subnetworks

Trigger vector sign (direction)
e Ranges for trigger vector magnitudes

The following sections describe the guidance methods irerdetail. Some comparative
studies are also provided to compare solution convergeneednd accuracy between
guided and unguided trigger networks.

4.6.1 Trigger Network Layout

An unguided trigger network must utilize a large enough layim accommodate pos-
sible structural changes and required subnetwork courguitfance is not utilized, the
network layout must contain a large enough number of instigdnetworks to eventually
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represent the different behaviors to be executed by thetagdhsubnetworks are ini-
tially connected by trigger vectors representing posgiélationships between behavior
executions. Several significant issues are present in itiization of unguided trigger
networks:

e The designer has to make an estimate of the maximum possibiber of behav-
iors required for the agent to achieve its goals. This mayb@accomplished
without a thorough analysis of the possible execution stendor agent behav-
iors. Once such analysis has been performed, the insiglihett may be utilized
in a more productive manner than the simple determinatianatimum possible
behavior count and network hierarchy levels.

e Several layers may be present in the network hierarchyizity a large number
of behaviors at each level may cause the size of the unguidedork to grow
exponentially drastically reducing the possibility forcacate convergence of the
network and significantly increasing the evolution dunatio

e A complex articulated structure would contain a large nunabgoints with possi-
bly multiple degrees of freedom for each joint. Includingpmassible action$ in
each subnetwork would create an exponentially large vier@dunt to be optimized
for each behavior within the network.

Guiding the trigger network into faster and more accurateeggence requires the
inclusions of constraints that limit the problem searchcsplay minimizing the trigger
network size. Such constraints would relate to subnetwistctiring and dependency,
action inclusion, parameter ranges, and trigger vectectons and magnitudes.

4.6.2 Subnetwork Structuring

Subnetworks represent primitive behaviors that are usdaligding blocks within the
trigger network. In order to limit the network size, guidarns provided by loosely defin-
ing the basic behavioral structure essential for the aenmant of the goals. In order to
achieve the most optimum control strategy, the followingauring steps are utilized:

e The execution path that connects the beginning of the agéfe’cycle with its
associated goal achievement point is divided into multgeigments where the end
point of each segment represents a desired known state.

4An action is defined as a control strategy relating to a paldicaxis of a particular joint. A joint with
multiple degrees of freedom would be represented by meltptions



CHAPTER 4. GUIDED GENETIC EVOLUTION 89

e Each of the path segments is represented by a subnetwodptndimg the agent
from one known state to the next.

e Each subnetwork is structured loosely by specifying theibes actions that would
contribute to the successful achievement of the desirdel. sta

e Subnetworks are connected via trigger vectors repreggttim relationships that
govern the triggering of primitive behaviors.

Once the core subnetwork structure is in place, the evelatipprocess optimizes
the control strategy by altering the internal subnetwonkponents as well as the vector
connectivity between subnetworks.

If we examine an example of a four-legged robotic agent withgoal of achieving
forward mobility, we notice some essential segmentatibas éxist on the path to the
successful achievement of the goal. The segments repliesermediate goals the agent
must achieve in order to reach successful forward stepmitigres. Figure 4.20 shows the
four-legged robot in the simulation environment.

e

Figure 4.20 Four-legged robot placed in the simulation environment.

In order to simplify the control problem, we structure therféegged robot problem
utilizing only 4 active joints. The four joints are used tanoect the 4 legs to the main
torso, while the 4 feet are connected to the legs using pagsints that lock the feet
at a specific angle. Each of the active joints utilize two degrof freedom in order to
be able to move the leg upward and downward as well as forwaddackward. Each
movement along an axis of a joint is considered a separatenatiat is independently
evolvable. Hence, we utilize a total of eight actions fortcoliing the robot. Table 4.6
lists the action classifications for the four-legged attited structure.
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ID

Joint Axis Description

al
a2
a3
a4
ab
a6
ar
a8

j1
j2
j3
j4
j1
j2
j3
j4

1

NNNMNNPFP PP

Up/down motion for front right joint
Up/down motion for front left joint
Up/down motion for rear right joint
Up/down motion for rear left joint
Front/back motion for front right joint
Front/back motion for front left joint
Front/back motion for rear right joint
Front/back motion for rear left joint

Table 4.3 Action classification for the four-legged robot problem.
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Figure 4.21 Action classifications for the four legged articulatedisture.

Figure 4.21 shows the location for each of the joints beinlizatl as well as the
associated action tied to each of the joint axis. In orderctieve successful forward
mobility, the joints must be controlled using an approgristrategy. If we do not uti-
lize any guidance in the robot motion planning, then we mestr&te the approximate
number of intermediate behaviors the robot must step thraugrder to achieve its pri-
mary goal. For each of the behaviors decided upon, we muktdeall eight actions
as possible contributors to the behavior. In addition, wetnmclude trigger vectors be-
tween each action and the other seven actions within eacvioeho represent possible

execution dependencies. Similarly, each behavior, repted by a subnetwork, must be
connected to all other behaviors to represent possiblendigpeies among the behav-
iors themselves. Considering the unguided behavicaind its eight associated actions

ai,...Aas, Figure 4.22 shows the structuring of thesubnetwork.
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Figure 4.22 Single behavior in unguided trigger network includingasbsociated actions
and action dependencies.

For each of the behaviors included in the trigger networ&|able parameters must
be utilized for each of the utilized actions and trigger vest For a single behavior
with eight direct control actions, we require a single pagtanfor the desired angle, and
another parameter for the associated urgency. Hence, wérees) total of 16 action
variables for the subnetwork. In addition, since each actiode is connected to each
other node as well as the representative relay node viagetrigector, we have a com-
pletely connected mesh network of 9 nodes. For a networkmfdes, the number of
required connections is(n—1)/2, hence, we require 36 trigger vectors within the net-
work. Two variable are required to hold the state of for eaigjger vector: one variable
is utilized to represent the connection direction and ntagiei of the vector, and another
is used to hold the activation state. In addition to the maésub network connections,
additional connections are required to represent depegdetationships between sub-
networks. Figure 4.23 shows the interconnections betwabnetworks utilized in the
four-legged robot control problem.

Table 4.4 details the different variable counts for the gierptimization problem.
We notice that without the use of genetic guidance, the nurobeariables to be opti-
mized in order to achieve the desired goal is very large. tfeoto achieve successful
evolution of a robotic controller for the presented problensignificantly large popu-
lation size must be utilized over a large number of genematiorThe complexity of the
structure being evolved exponentially increases the @wafar achieving convergence to
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Figure 4.23 Subnetwork connectivity among four behaviors in the udgdiconfigura-
tion of the trigger network.

an suboptimum control strategy.

Actions/Subnet 8
Variables/Action 2
\Vectors/Subnet 36
Variables/Vector 2
Total Variables/Subnet 88
Subnets 4
Subnet Connections 6

Total Network Variables 358

Table 4.4 Variable counts for the unguided four-legged robot proble

Structural guidance may be utilized in the presented proldteminimize the number
of variables being optimized. This is achieved by applyiegesal strategies:

e Approximating the core behaviors necessary for achie\negyoal.

e Choosing contributing actions for each behavior and usimg those actions in the
structuring of the subnetwork.

e Minimizing the number of vector connections within eachrsetivork by utilizing
only vector connections that have a high probability of beitilized.

e Minimizing the number of vector connections among behavaepending on the
possible dependencies that govern the achievement ofmatiate goals.
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In order to provide layout guidance for the trigger netwanik, formulate a possible
configuration that would yield successful forward mobiliye base the trigger network
on two subnetworks each representing a single behaviouttiaes all of the four joints.
Since each joint moves on two axis, each subnetwork con8axgion nodes all to be
triggered simultaneously. The aim is to have the evolutippaocess locate an appro-
priate configuration that propels the robot forward. The ihmsiitive mobility scenario
is achieved if the genetic process reaches the generalrssmoébehaviors listed in the
following table:

Behavior 1 Jointg; and j4 manage to move their associated legs up and forward, while
joints j2 and j3 manage to move their associated legs down and back.

Behavior 2 Jointg, and j3 manage to move their associated legs up and forward, while
joints j; and j4 manage to move their associated legs down and back.

The reverse of the given strategy, where the action coupéesveapped, should also
yield the same results. Although the given structure is thstamtuitive configuration for
four-legged mobility, the genetic process probabilidlycanay find other configurations
that also work as well. Table 4.5 shows the variable cou¢s tife application of network
modifications.

Actions/Subnet 8
Vectors/Subnet 8
Total Variables/Subnet 32
Subnets 2
Subnet Connections 2

Total Network Variables 36

Table 4.5 Variable counts for modified trigger network.

For the specific given problem, the following modificatioressé been implemented
to reduce the complexity of the trigger network:

e Number of subnetworks was reduced to only two subnets reptieg two core
behaviors,

e All trigger vector connections between actions were rerdondoth subnetworks,

e All trigger vector magnitudes in the network were fixed,
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e Only a single trigger vector connects the first subnetworkht second using a
single prominent action of the first subnetwork,

e Only a single trigger vector connects the second subnettedhe reset node using
a single prominent action of the second subnetwork.

Figure 4.24 shows the structure of the guided trigger nétwdhe network consists
of the two subnetworkb; andbs.

Orgo.

STRIO

Figure 4.24 Guided trigger network for the evolution of the four-leggebot.

The relay nodd; is triggered directly by the root of the network making it first

node to be executed. The noein turn triggers its associated eight actions represented
by the unique IDsy1...a18. The actions directly correspond to the action classifcesti
listed in Table 4.6.

Actions of the subnetwork; are executed immediately following the execution of their
associated relay node since all trigger vectors connettimgelay node to the associated
actions are fixed to a value of zero.
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Action a1 is selected as the prominent actiorbef The subnetworks is triggered
by a; with a trigger vector magnitude of 1, which means thais triggered immediately
following the termination ofy;.

The execution ob, prompts the immediate execution of acti@as...axg, which also
directly correspond to the action classifications listedable 4.6. The actions are
triggered immediately as the internal trigger vectorb.nére also fixed to a value of
zero.

Action ay1 is selected as the prominent actiornbef Onceay; terminates its execution,
it triggers a reset node which resets the state of the erdgiveank then triggerb; to
restart the execution cycle.

The evolution of the four-legged robot utilizes 50 indivadisibeing evolved over 100
generations. The genetic process utilizes a roulette wdedettion method, crossover
probability p; = 0.01, crossover alpha = 0.1, and mutation probabilitp,, = 0.01. The
evolution progression is shown in Figure 4.25.
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Figure 4.25 Evolution progression of the four-legged robot over 100agations.

The associated fitness function utilized is structured torqte forward mobility in a
straight line without rotation. In order to evaluate thefpenance of each individual, the
following strategy was followed:
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e A reward is assigned based on the distance traveled by tlo¢ wothin a 10 sec-
ond period. The reward assigned is proportionate to thambsttraversed along a
straight line originating at the origin.

e A penalty is applied based on the deviation of the robot fromdesired straight
path. The penalty assigned is proportionate to the perpeladidistance between
the final robot position and the desired path.

e A penalty is applied based on the rotation of the robot. Theaftg assigned is
proportionate to the rotation angle about the z-axis afterl0-second run.

The specific fitness functiofy which represents the fitness of individu@ defined as:
fi = (% - 1000 — (y; - 1000 — (6; - 2000 (4.8)

wherex; is the distance travelled along the target paths the final perpendicular
distance between the robot position and the target pathfaisdthe rotation along the
z-axis that has occurred since the triggering of the network

As predicted, the four-legged robot does not conform to thstrimtuitive method for
forward mobility. The robot follows a systematic hoppingtioa that ultimately allows
it to achieve forward mobility (Figure 4.26). Although velignited guidance has been
applied to the network structuring, the genetic processafses to evolve a method for
forward mobility based on the criteria specified in the fisMsction.

— ) \

Figure 4.26 Four-legged robot forward mobility utilizing a hoppinghavior.

4.6.3 Guidance of Actions

In addition to guiding the trigger network layout, the nettvactions could also be guided
towards specific configurations that would allow faster amateraccurate convergence.
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Guidance of actions aim to reduce the problem search spaoedbging the size of the
search interval for each of the action parameters. Any o&tiien types utilized may be
guided by providing a level of parameter range focusing. ffinee action types may be
guided as follows:

e Direct controlactions may be guided by reducing the search interval fdn tho
angle and urgency parameters. Without guidance, the astoifd utilize the joint
low and high stop points as the boundaries for its search. edery by specifying
an alternate range that is of a smaller size than the fullegasfgnotion for the
joint, better results may be achieved. The urgency parameg also be focused
by utilizing insight into the nature of the problem and usargurgency range that
would be most appropriate for achieving the desired results

e Control strategyaction evolution aims to find a functional dependency beivare
input value and a desired output signal. By utilizing onlyuaset of the available
functions, we may cut down the evolution time. For exampglknowledge of the
problem leads to a determination that the output signal exced the input value,
then only functions that result in an output that exceedsirtpat value may be
used.

e PID control actions evolve their control parameters in order to achtbeemost
optimum control strategy based on an input value. The paersig, ki, andky
could be represented by any value, and reducing the possiblwal for each of
the parameters may drastically increase the probabilippifnum convergence.

For the four-legged robot problem, we utilize further guida of direct control pa-
rameters in an effort to achieve quicker and better restiis.following action guidance
strategy was followed:

In the first behavior identified bly;, the intervals for possible leg angles where reduced
in size so that the legs connected to joiptsnd j4 were limited to moving upward and
forward throughout the behavior. Similarly, the legs castad to jointsj, and j3 were
limited to moving downward and backward during the behavior

In the second behavior identified by, the legs connected to joinjs and j4 were
limited to moving downward and backward, while the legs @wted to jointg, and |3
were limited to moving upward and forward.
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The urgency of action execution was limited so that the upfdmovements of the legs
executes in half the time (on average) as the forward/backmavement. This strategy
allows for the forward stepping to be achieve by having tigs leuch the ground and
then continue to pull backwards propelling the robot forvar

The same genetic parameters were utilized for the evolofitre agent after the guid-
ance modifications have been made. Also, the same fithessoilumere used to measure
the results. The evolution progression of the guided rabshown in Figure 4.27. If we
compare the evolution results to that of the unguided ei@iytve notice the same pro-
gressive improvement in average fitness over the entiraigeobry process. However,
we notice that the final average fitness achieved after 108rggans of evolution has
almost doubled due to the evolutionary guidance introduoetie actions executed by
the agent. The final average fitness of the entire populaticreased from 1812 to 3600
due to the network modifications implemented, which reprtssa 98% increase.
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Figure 4.27 Guided evolution progression of the four-legged robotr &@0 generations.

4.6.4 Guidance of Trigger Vectors

Trigger vectors are utilized as means for determining tlggisecing of event execution
within the trigger network. An unguided trigger network vidinclude trigger vectors
connecting all network nodes representing possible ei@tuelationships. Guidance
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of trigger vector allocation is achieved by utilizing kn@dge of the problem as well
as possible solution scenarios to limit the trigger vectlrcation by applying specific
vector configurations.

In the four-legged robot problem, knowledge of the probléiowmss us to determine
that a possible mobility scenario would consist of a twogghapproach where the first
phase triggers the second. Each phase consists of multidaa triggered simultane-
ously by the subnetwork relay node without any trigger viectmnnecting the actions to
each other. By guiding the trigger vector allocation in tim@nner, we have significantly
reduced the complexity of the problem by reducing the vectamt within each subnet-
work. However, further problem guidance could be achiewethie further partitioning
of the problem into smaller core behaviors supported bygé&igelationships.

We expand the problem guidance to encapsulate 16 diffeotioina. Each leg is to
have the following four independent actions associated iwit

e Upward movement
e Downward movement
e Forward movement
e Backward movement

The following expanded action classifications are to be used
The desired sequencing to be achieved is as follows:

1. Legs 1 and 4 move upwards and forwards while legs 2 and 3 bemlevards,
2. Legs 1 and 4 both lower their legs to make contact with thi&ingsurface,
3. Legs 2 and 3 move upwards and forwards while legs 1 and 4 benlevards,
4. Legs 2 and 3 both lower their legs to make contact with th&ng surface,

5. Repeat cycle.

Four behaviors are needed for achieving the action combmsatiescribed above. The
first behavior identified b¥; consists of the six described actions. Figure 4.28 shows the
structure of theéb; subnetwork. The six actions containedbnare all executed simul-
taneously at the time the subnetwork is executed. Each addhens inb; is given the
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ID Joint Axis Description
al j1 1 Up motion for front right joint

a2 j1 1 Down motion for front right joint
a3 j1 2 Front motion for front right joint
a4 ]l 2 Back motion for front right joint
a5 |2 1 Up motion for front left joint

a6 j2 1 Down motion for front left joint
ar  j2 2 Front motion for front left joint
a8 j2 2 Back motion for front left joint
a9 j3 1 Up motion for rear right joint
al0 j3 1 Down motion for rear right joint
all j3 2 Front motion for rear right joint
al2 j3 2 Back motion for rear right joint
al3 j4 1 Up motion for rear left joint
ald j4 1 Down motion for rear left joint
al5 j4 2 Front motion for rear left joint
alé j4 2 Back motion for rear left joint

Table 4.6 Expanded action classification for the four-legged rolobfem.

b

Figure 4.28 Subnetworkb; representing first agent behavior.

same minimum execution urgency abtand a maximum execution urgency 002The
genetic process is to determine the best urgency value ébr@ahe joint movements.
The second agent behavior identified igyconsists of two actions that lower legs 1
and 4 to make contact with the ground in preparation for gdfimgethe robot forward.
Both actions are also connected to their associated relds via zero-magnitude trigger
vectors, and they are given the same urgency bounds as thesact the first behavior
with a minimum of 05 and a maximum of.B. Behaviorb; is represented by Figure 4.29
The third behavior is quite similar to the first except for taet that it reversed the
roles of the two leg groups. Legs 2 and 3 are to move upwardsoawards while legs 1



CHAPTER 4. GUIDED GENETIC EVOLUTION 101

bz

Figure 4.29 Subnetworkb, representing the second agent behavior.

and 4 are to move backwards. The backward action of legs 1 ahduld be responsible
for propelling the robot forward allowing it to achieve agpeng behavior. The same
trigger vector configuration is utilized for this behaviarfar the previous two. Behavior
bs is represented by Figure 4.30

Figure 4.30 Subnetworkbs representing the third agent behavior.

The fourth and final behavior is similar to behavimrexcept for the fact that it lowers
legs 2 and 3 to the walking surface instead of legs 1 and 4 .-@agnitude trigger vectors
are also utilized to trigger the actions within the subnetwo

by

Figure 4.31 Subnetworko, representing the fourth agent behavior.

The sequencing of behavior execution is structured basedorediate transitions
from one behavior to the next. A dominant action is choserarhesubnetwork for the
purposes of triggering the next behavior once its own executas terminated. The
following dominant actions were chosen for each of the bieinay
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e Action az in by triggersho.
e Action ay4in by triggersbs.
e Action a7 in bz triggersbg.
e Action ag in by triggers the reset node.

The complete trigger network for the expanded problem isvshia Figure 4.32. The
network root triggers subnetwoltl starting the execution of the first behavior. Each
subnetwork triggers the next until subnetwduktriggers a reset node which resets all
nodes to their original state and starts the network execwaince more. The evolutionary
process utilized the same genetic parameters as in theopeeiterations of the prob-
lem. A roulette wheel selection method was utilized. A cowss probabilityp; = 0.01,
crossover alpha = 0.1, and mutation probabilityp,, = 0.01 were utilized in the ge-
netic process. The evolution progression over 100 gemasis shown in Figure 4.33.
We notice that due to the added network guidance, the avditagss exceeds that of
the previous network layout within the first 10 generatiohgwlution. The progress
continues throughout the evolutionary process reachingghdiverage fitness of approxi-
mately 4800, which represents a further 33% increase irageditness over the previous
network layout.

4.7 Detailed Algorithm

In this section, we detail the algorithm utilized for the kuon of trigger networks for
articulated robot control. Once the network has been siradtbased on knowledge of
the problem as well as the systematic guidance utilizeddoaethe problem complexity,
the genetic evolution algorithm is used to evolve the mosinapm control strategy in
relation to the desired goals. The algorithm presentedredie evolution of all aspects
of the trigger network, including action nodes, triggerteedirections, magnitudes and
activations, as well as the general subnetwork connegtivit
The evolution algorithm utilized is structured as follows:

Evolution Algorithm
begin(1)
t:=0
initialize G based on network guidance
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Figure 4.32 Trigger network for expanded four-legged robot probleroveing the four
subnetworks representing the four core agent behaviors.

evaluate fitness of individuals in G
While Not termination-conditiomo
begin(2)

t=t+1

select Gfrom G_1:
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Figure 4.33 Evolution progression of the four-legged robot over 100agations.
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whereP(cj) is the probability for selecting individua}, f(cj) is the fitness
value for individualc;, f(cj) is the fitness value for individuaj, mis the
number of individuals in the generation, apdR — R is a non-decreasing
transformation used to shift the fitness valueRta

crossover @with probability p:

g- (max— Omin)

Omax

- (Omax— Gmin))}

Omax

bﬂ"KX%nf)—-l~(anmx—- ),rnaKX%n$)+-l~(amax—

wherepc is the crossover probabilitgmaxis the maximum generation
numberg is the current generation numbea,in andomax are the minimum
and maximunu values desired respectively, represents geriefor the first
parent individualx? represents geridor the second parent individual, and

| = max(x', x?) — min(x", %)
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mutate G with probability p:

Randomly choose:

or
C =X —A(t,x —a)
where

At(t,x) = Xx- <1— r<1_9miax)b>

The random value is chosen from the intervaimin, Mmay, Pm is the
mutation probability, andmin andmmax define the bounds of the target
domain for the specific gene.

evaluate fitness of individuals inn G
end(2)
end(1)

The initialization, crossover and mutation algorithmsserged above are used for all
action nodes as well as trigger vectors within the networkthe case of action nodes,
the algorithm is applied depending on the node subtype dssditype holds a different
type of structure to be evolved. Action nodes are evolve@baWs:

e Direct Control
— The joint angle for each active axis is initialized using adam value gener-

ated from the intervdlAnglanin, Anglénax-

— The execution urgency for each active joint axis is inigetl using a random
value generated from the intenjlrgencynin, U rgencynay -

— Crossover is applied to both the angle and urgency valuesmirtdividuals
using the algorithm presented.

— Mutation is applied to both the angle and urgency values ofgeindividual
using the algorithm presented.

e Control Strategy
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— The control function ID is randomly chosen from the intefi\fahn, fmay. Dis-
cretization is used to map the floating point value generhiethe genetic
process to an integer function ID.

— The control scaling valugis initialized using a random value generated from
the intervallSmin, Smax-

— Crossover is applied to both the function ID and scaling @atitwo individ-
uals using the algorithm presented.

— Mutation is applied to both the function ID and scaling vatde single indi-
vidual using the algorithm presented.

e PID Control

— The PID parametétpis randomly chosen from the intervipmin, K pmax-
— The PID parametéki is randomly chosen from the intervitimin, Kimay -
— The PID parametékd is randomly chosen from the intervitldmin, Kdmax-

— Crossover is applied to the valukep, ki andkp of two individuals using the
algorithm presented.

— Mutation is applied to the valuds, ki andkp of a single individual using the
algorithm presented.

The application of initialization, crossover and mutatmperators to trigger vector
parameters is quite similar to their application to actiodes. The following strategy is
followed for trigger vectors:

e The trigger vector value is randomly chosen from the intefvgin, Vmay, Where
Vmin and vVmax represent the minimum and maximum dependency values respec
tively. The sign of the vector value represents the direatibthe vector, while the
magnitude represents the execution dependency betewedndmodes involved.
Guidance is achieved by taking the desired direction andnihade into account
when choosing the interval bounds for the specific vector.

e The trigger vector activation value is chosen randomly thaate if the vector will
in fact trigger the execution of other vectors within thewatk or not. The activa-
tion value is chosen randomly from the inter{@l1]. A value below 05 indicates

that the vector is inactive, while a value greater than oeétpu0.5 indicates that it
is active.
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e Crossover is applied to the trigger vector value and actimanf two individuals
using the algorithm presented.

e Mutation is applied to the trigger vector value and actmatdf a single individual
using the algorithm presented.

The guidance utilized with trigger networks represent aéostrategy for pointing the
evolutionary process towards a certain desired configuratHowever, the guidance is
not meant to enforce rigid constraints that constrict th@gionary process taking away
the essence and benefits of the genetic methodologies. abapproaches may be used
to allow the network to evolve to an area outside of the suggdeguidance criteria:

e The crossover operation utilizes values from both paremtgenerate offspring.
The crossoven value is used to expand the target range beyond the bousdarie
represented by the values extracted from the parents. Tgerlthea value, the
more of an opportunity the process has to move outside ofuttagce interval by
gradually reaching one of the boundaries then crossingdhiag a different area
of the search space.

e The mutation operation generates offspring by generatnglom values from a
predetermined interval for each target gene. Guidanceosged through the se-
lection of desired intervals from which to select the gemestie first generation of
individuals. Future generations, however, may utilizergdainterval encompass-
ing all feasible values for the gene as the basis for selgtti@random values. This
would allow the process to select gene values that contrdticinitial guidance
given to the system. If any of the selected values prove tduywre higher fitness
values, then those values will be chosen for reproductio they may eventually
have prominent presence in the population.

4.8 Conclusion

The guided genetic evolution platform utilizes triggermetks as a representational ve-
hicle for the robotic control problem. The framework acleigwptimization of the control
strategy allowing for the successful goal-based contr@utbnomous robotic agents in
real-time. Trigger networks represent a connectionistehettuctured for the encapsu-
lation of the articulated robotic control problem. The netlkstructure allows for the
modeling of robotic actions and behaviors as well as theioglships the govern the
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achievement of control goals. The evolution of trigger rets utilizing customized ge-
netic methodologies allows the system to achieve optimipedrol strategies by follow-
ing a systematic learning policy geared towards the contis@nd gradual enhancement
of system performance.

The guided genetic evolution platform presents constriatshe guidance of the
control problem genetic representation and evolutiontibally reducing the complexity
of the problem. The genetic guidance reduces the variabfglxity associated with
the optimization problem which allows for faster systemwagence and reduces the
chances for convergence to suboptimal results. The guedarechanism also allows for
the inclusion ofearning by examplenethodologies without taking away from the essence
of the genetic process.

Genetic guidance is achieved through the manipulation eége initialization to fa-
vor specific configurations relating to agent actions as @aglfoverning relationships
represented by trigger vectors. Trigger network evoluéipplies genetic selection grad-
ually increasing the population average fitness over melggnerations. The genetic
crossoven choice as well as the mutation interval maintains the ndtwability to devi-
ate from the guidance strategy when proven to be beneficigthéoevolutionary process.

The following chapters discuss the utilization of guidediefec evolution in several
specific scenarios for the control of articulated robotiaatures. For each of the prob-
lems presented, the guidance strategy as well as the raselitiscussed.



Chapter 5

TESTING THE EVOLUTION PLATFORM

5.1 Introduction

This chapter offers an implementation strategy to be fadidw order to structure a con-
trol problem as an evolvable guided trigger network. Theptéraalso presents several
control scenarios for articulated robotic control usingdgd genetic evolution. For each
of the scenarios presented, the structuring of the contaidipm is discussed in detail
as well as the trigger network problem representation andagge. The implementa-

tions given aim to convey different perspectives of the aamroblem along with design

methodologies for achieving successful control.

5.2 Implementation

This section describes a systematic implementation apprfma structuring the control
problem in order to utilize guided genetic evolution methothe following steps list the
implementation process:

1. The robotic agentis encoded as a trigger network whictesgmts all the actions to
be controlled by the evolved controller. Each of the a rabjoint axis is associated
with a direct control action. The minimum and maximum andt@seach of the
actions are determined by the low and high stop points of xiee &ach possible
force application within the system is also associated witlontrol strategy action
or PID control action depending on the nature of the problem.

2. The subnetwork count representing the number of posag#at behaviors is cho-
sen based on the total number of joint axis to be controlledthBbehavior maybe
executed multiple times utilizing different parameteustiee subnetwork count may
require expansion depending on the estimated repeat cbaatb behavior.

3. The trigger network is structured based on the numbertairecand sub networks.
Each subnetwork is structured with all possible actionatsmal nodes, and trigger
vectors are utilized to connect each action to each oth&raict both directions.
The same trigger vector connectivity is utilized for subveak connectivity.

109
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4. Guidance is applied to the network utilizing the follogistrategy:

e The number of sub networks to be utilized is reduced usinglmsnto the
specific problem to be solved as well the possible sequerstegarios in-
volved.

e The number of actions within each subnetwork is reducedripg on the
positioning of the subnetwork in the behavior executiorusege and the ac-
tions that could possibly allow for achieving the desiretidaor goals.

The following sections discuss the implementation detdileveral control problems
and their associated control strategies developed uigjiguided genetic evolution. For
each of the problems presented, the implementation pratessssed is used to encode
the robotic agent as a trigger network, then guided evalus@pplied to reach a trained
controller capable of achieving the desired goals.

5.3 Inverted Pendulum

The Inverted Pendulunproblem is used extensively as a benchmark for testing wario
types of control strategies. The problem has been pres@néstbusly, and we present
the general setup of the inverted pendulum problem in Figutefor convenience. In
this section, we encode the associated control problem asawable trigger network
in order to achieve the most optimum control strategy. Thal fiesults are evaluated
according to the level at which the desired output is achieve

i

II'I:'I.E. X

& oy
i

& <)

Figure 5.1 The inverted pendulum environment.

Four different input parameters are used to describe the stdhe pendulum system
at any given point in time. Instead of partitioning each parameter space into several
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partitions, we use the direct value of the parameter as iaptlte system and build our
control strategy based on the entire parameter space intordehieve the most optimum
results.

The following four parameters are available to the corgradlt each time step

e X The horizontal distance of the cart along the x-axis messirom the cart initial
starting position. The value is given in meters and is cans&d to a maximum
value ofxnax The control strategy has to detect when the cart is locaietbse
proximity to the distance boundary and apply corrective sness to move the cart
closer to the point of origin.

¢ \t: The horizontal velocity of the cart along the x-axis. Th&eds given in meters
per second. The magnitude wafshould stay close to zero as long as the pole is
balanced. As forces are applied to the pole in an effort tarizad the poldy | will
temporarily increase for a duration of time then decreask tzabeing close to zero
minimizing the rotational motion of the pole when it is in ddizced state.

e O;: The pole’s clockwise angle measure to the z-axis. The maxirangle allowed
is defined a®max The pole balancing is considered successful as long abdwe a
lute value of the angl® is less thar®max.

e x: The angular velocity of the pole measured in degrees penskedole balancing
is achieved by trying to minimize the effect of the forces ba pole at any given
time. Minimizing and maintainingx close to zero guarantees keeping the pole in
a balanced position.

5.3.1 Action Specifications

The first step in encoding the control problem as a triggewoek requires the determi-
nation of all relevant actions to be performed by the agedtaplied by the evolved
controller. In this particular scenario, the specificasiofthe problem dictate a single ac-
tion to be performed as a means for controlling the robotigcstire. The problem states
that the pole is to be balanced only via the application aféeito the cart in a manner that
counters the instability of the pole. Hence, a single camtrechanism is utilized within
the trigger network, yet several partitions of the conttdtegy are utilized contributing
to the calculation to the most optimum force application.

The net force vectov applied to the cart is defined as
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v=(x,0,0)

where X is the magnitude of the force to be applied to cortexpble position.

Although a single force application is used for controllithgg robotic system, the
calculation of the force magnitude and direction stems fitegrexecution of the following
actions:

e Action g represents th@ constraint component of the control strategy. As the angle
0 approache®max forces are applied to the cart in the direction of pole masem
to increase the pole’s angular velocity in the oppositedtioa. The closeB is to
zero, the lower the level of force application in order toueel the possibility of
pushing the pole into a violent movement.

Action a; is configured as eontrol strategyaction which is to be evolved in an aim
to find the most optimal functional relationship between pbée angled and the
force to be applied to the cart. The action aims to maintagrctinstraint

16] < Bmax (5.1)

through the utilization of the most optimal functional teaship genetically cho-
sen from Table 4.1.

e Action g represents the constraint component of the control strategy. The action
aims to prevent the cart from moving beyoxghxdistance from the point of origin,
so as the distance approachesmax forces are applied to the cart in order to
move it back towards the point of origin. Acti@ is also configured as @ntrol
strategyaction which is to be evolved in an aim to find the most optimalctional
relationship between the distance of the cart relativg.tg and the force to be
applied to the cart. The action aims to maintain the condtrai

IX| < Xmax (5.2)

through the utilization of the most optimal functional teaship genetically cho-
sen from Table 4.1.
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5.3.2 Initial Network Layout

The initial trigger network layout consists only of the twaiians listed, and both actions
are connected to each other via dual-directional triggetors. The layout is shown in

Figure 5.2.

Figure 5.2 Layout for the inverted pendulum trigger network.

Both actionsa; anday are control strategy actions, which means that they execute
for the entire life-cycle of the agent attempting to continsly achieve a particular goal.
Hence, the trigger vectors connecting the two actions arquite relevant as both actions
should start their execution cycle as soon as the contiislteiggered.

5.3.3 Network Guidance

As long as the mentioned system goals are being maintaihedsystem is considered
to be in a successful balancing state. Network guidancehigead by using insight into
the nature of the problem as well as the actions to be exett¢lde agent to enhance
the network layout and reduce its complexity. The guidanoegdure aims to make
adjustments to action parameters and inclusion, triggetoveparameters and activation,
as well as subnetwork connectivity when sub networks atieedi within the network.

Control strategy actions require the specification of a glédrce application param-
eter to be utilized in the evolutionary process. The valu2®is specified as the global
force application parameter for both actions within thenoek. In addition to the evolu-
tion of the functional relationships related to actions¢alisg parameter is also evolved
for each action in order to scale the constant force valuledartost optimum force mag-
nitude to be utilized by the action.

Since the network actions are continuous actions that parfontinuous adjustments
to the system, we guide the actions to commence executiomeanbment the entire
network is triggered. Hence, we set the magnitudes of tggerivectors connecting the
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network root to the action nodes to zero. In addition, ajjger vectors connecting action
nodes to each other are removed. All actions are to be tieglgay the root, and none of
the actions trigger other actions; hence, no dependensysexmong action nodes, and
the presence of the trigger vectors is not needed. Figursh®ws the layout of the guided
trigger network for the inverted pendulum problem.

v 0
F=z0 F=z0

Figure 5.3 Guided trigger network for the inverted pendulum problem.

5.3.4 Fitness Function

The ultimate goal to be achieved by the system is to maintalance of the pole on a
continuous basis. The fitness function aims to measure tHerpgnce of each indi-
vidual within the population by evaluating their resultsredation to the goal. For the
inverted pendulum problem, the performance of each indalics measured according to
the number of time steps through which the pole remains bathrOnce the pole balanc-
ing fails, the fitness function returns the time step coutgaised as the fitness value for
the individual. The pole balancing fails if any of the followg conditions become true:

6] > Bmax

or
IX| > Xmax

The time step value returned by the fitness function is usedketermine the selection
probability for each individual.

5.3.5 Evolution Results

The following parameters were used to drive the evolutippaocess:
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Individuals: 10
Generations: 80
Crossoven 0.1

Pc 0.1
Pm 0.01
Bmax 12
Xmax 2.5

Table 5.1 Evolution parameters fogmax = 2.5.

The final evolutionary results of the corrective force aggiiion components were as
follows:

B corrective force fg = 19.32-63
x corrective force fy=3.74-x3

The sum of the two force components was used as the final foagmitade to be
applied to the cart. We notice that the scaling parametergdras evolved to a value
close to 1.0 showing that tH&correction requires the most amount of force in order to
achieve the best results. The scaling parametef,fdiowever, has evolved to a smaller
value.

Figure 5.4 shows the results of the evolutionary processndtiee a gradual increase
in the overall fitness of individuals throughout the 80 gatiens of evolution.

5.3.6 Problem Expansion

We now present a slight expansion of the problem in an aimdmpte system stability
as part of the evolutionary process. We repeat the previenstg experiment with a
single modification of the fitness function limiting tixgax parameter to 1.0 instead of
2.5. Following this newly introduced limitation, the carust remain within 1.0 unit of
the point of origin in order for the balancing to be considesaccessful. Table 5.2 shows
the parameters used in the evolutionary process.

Although we do not view a significant changefgiasxmaxis reduced, we do notice a
significant increase iffi in order to maintain the cart closer to the origination poirtie
final evolved force application functions fawax= 1.0 are defined as:

B corrective force fg = 18.68-63
x corrective force fy = 1146-x3
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Figure 5.4 Evolutionary results fokmax= 2.5.

Individuals: 10
Generations: 80
Crossoven 0.1

Pc 0.1
Pm 0.01
Bmax 12
Xmax 1.0

Table 5.2 Evolution parameters fogmax = 1.0.

Figure 5.5 shows the results of thgax= 1.0 problem variation. We notice a gradual
increase in performance very similar to the previous resulhe average fitness results
demonstrate that by applying the correct behavior apjpdicatve may maintain success-
ful evolution, even as more constraints are placed on thersys

5.3.7 PID Control

We further expand the problem methodology to utilize evdl¥aD controller actions
instead of control strategy actions. This change wouldnalls to gauge the efficiency
of utilizing evolved PID compared to other methods. For frisblem, we use the same
network layout as in the previous experiment. However, witlihe action nodes to only
two described as follows:
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Figure 5.5 Evolutionary results foxmax= 1.0.

e Action a; is configured as a PID action which aims to find the most optiriBl
control strategy using the pole an@eas input and outputting the force component
value fg.

e Action ay is configured as a PID action using the distance from theroxigs input
and outputting the force component valije

In the previous experiment, the velocity of the caend the angular velocity of the
polewwere not used as part of the balancing strategy. The evolNgdtRategy, however,
utilizes the distancr and the angl® to internally calculate the associated rates of change
to allow for more efficient and stable control.

The main goal of the PID control evolution is to find the modimjpl PID parameters
Kp, Ki andKy to satisfy the equation

f=Kp-e+ Ki/e~dt+Kd¥ (5.3)

wheref is the resultant force calculated by the controller, amepresents the difference
between the current state of the system and a desired gtal sta

For the purposes of controlling the pole, we utilize the twicé valuesfg and fy to
be combined into a single force valdeto be applied to the cart. Given the two input
valuesB andx, the two forcesfg and fx are defined as:
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doe
fg = Kp9~9—i—Kie/9~dt—l— Kdea (5.4)
dx

whereb represents the angle of the pole arr@presents the distance from the origin.
The forcef to be applied to the cart is defined as

f = fo+ fy (5.6)

Table 5.3 shows the parameters used in the evolutionarggsoc

Individuals: 50
Generations: 50
Crossoven 0.2

Pc 0.1
Pm 0.05
Omax 12
Xmax 1.0

Table 5.3 PID control evolution parameters for inverted pendulumibem.

Figure 5.6 shows the evolution results of the inverted pemdiwcontroller utilizing
evolved PID control. We notice a gradual and stable incremgerformance through out
the evolutionary process. The slope of the performancetirisgignificantly more stable
than that of control strategy based implementation, whsdttributed to the PID control
tolerance for slight changes in the PID parameters. Figufesbows the final evolved
guided trigger network for the inverted pendulum problerfizing PID control. The
figure shows the final PID parameter values attained thrduglevolutionary process.

5.4 Robotic Arm

This section presents another robotic control problem whéties heavily on the evolu-
tion of trigger vector parameters as well as action pararsetde problem demonstrates
the evolution of the trigger network layout in an effort tchaave higher population fit-
ness. The problem is based on a robotic arm consisting of & drad two partitions
connected using universal joints. The robotic arm setupasva in Figure 5.8. As seen
in the figure, the arm is stationed in front of a wall which @ns a tunnel large enough
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Figure 5.6 Evolution progression of the inverted pendulum problertzitg evolved
PID control.

0 0
Kpi=14.4 Kp=6. 11
Ky=1.36 K3=0.92

Ka=-10.18 Ka=-14.24

Figure 5.7 Evolved guided trigger network for the inverted pendulurlglem utilizing
PID control.

to accommodate the robotic arm being extended within. Tdsvdre end of the tunnel, a
target sphere is placed marking the desired destinatiaiéatip of the robotic arm.
Since the arm is given the freedom to rotate in any directotiision with the wall
or the ground is prohibited. If collision occurs, the indiual is considered to have failed
the task and given a fitness value of zero. Otherwise, bothpartitions can move freely
on two different axis for each joint. The arm has four deg@eseedom and the only
limitations placed on the motion of the arm are dictated lgylthw and high stop points
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of each of the joint axis.

Figure 5.8 Robotic arm problem setup showing the target sphere reptieg the desired
destination for the tip of the arm.

5.4.1 Action Specifications

The robotic arm is controlled via two universal joints. Thatfjoint connects the lower

arm partition to the base, and the second joint connectsgperuarm partition to the

lower one. Since each of the universal joints operates ondegrees of freedom, the
entire arm has four degrees of freedom for which control camfis may be issued. The
robotic arm control scenario translates to four differeticans to be encoded in the trigger
network. The four actions are listed as follows (Figure 5.9)

e Action a; is configured as a direct control action to control the loweversal joint
issuing commands to control the joint axis movement perjeatal to the wall.
Hence, the action may issue commands to move the entire asearobr further
away from the wall.

e Action ay is configured as a direct control action to control the loweversal joint
issuing commands to control the joint axis movement pdradléhe wall. Hence,
the action may issue commands to move the entire arm to theargo the left
relative to the wall tunnel.

e Action agis configured as a direct control action to control the upp@rarsal joint
issuing commands to control the joint axis movement perjpeatal to the wall.
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Hence, the action may issue commands to move the upper atitigpacloser or
further away from the wall.

e Action ay is configured as a direct control action to control the upp@rarsal joint
issuing commands to control the joint axis movement pdradléhe wall. Hence
the action may issue commands to move the upper arm partditre right or to
the left relative to the wall tunnel.

Wl

Figure 5.9 Action specifications for the robotic arm problem.

The four actions listed above are duplicated as act&nag, a7, andag respectively
for the purposes of using an instance of each action in twereifit sub networks utilized
within the network.

5.4.2 Initial Network Layout

The initial layout for the robotic arm problem utilizes twabsnetworks representing
two distinct behaviors to be performed in succession by gemta Each of the two sub
networks will contain instances of all the actions the agenapable of performing. The
network is configured where one of the sub networks is trigddry the network root,
and once all the actions of that first network conclude thegcation cycle, the second
subnetwork is then triggered to perform its own actions.

The first subnetwork utilized in the network is labeled which is triggered directly
by the root, and in turn it triggers its four internal actiams ap, as, andas. The trigger
vectors connecting the relay nodbe to the four actions are assigned a trigger vector
magnitude between 0.0 and 1.0. The exact value is to be gafiggvolved.
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The second subnetwork utilized is labelad Once all the actions df; conclude their
execution)y is triggered. This is indicated by the presence of triggetaes connecting
each of the actions df; to the relay nodds,. Each of the trigger vectors enteribg
are assigned a magnitude aD1 This indicates thal, is triggered immediately after
the associated action has concluded. Omces triggered, it triggers its own associated
actions,as, ag, a7, andag depending on the trigger vector magnitude utilized. Theeexa
magnitudes are also evolved to a value between 0.0 and 1.0.

Figure 5.10 Initial trigger network layout for the robotic arm problem

5.4.3 Network Guidance

For the presented problem, we limit the network guidancenénhinimum in order to
fully demonstrate the network evolution phases. Althougight into the problem sug-
gests that since the tunnel is directly in front of the robatim, the actions designated
for moving both arm partitions in a direction that is paraltethe wall are not needed.
However, we aim to give the evolutionary process a chanceaati/ate the actions in
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guestion by carefully selecting a fitness function that $akéo the account any harmful
effects that those actions might cause.

Insight into the problem suggests the following desiredigomation that would yield
successful results, even though guidance is not appliedh®\e those configurations
(Figure 5.11):

e Actionsay, a4, ag andag should be deactivated or evolved to a direct angle control
that is close to zero. This would allow the arm to maintain sian in front of the
tunnel opening.

e Behaviorb; should bring the tip of the upper arm partition in front of tiuanel
opening in preparation for pushing the arm through the tunires is achieved by
utilizing actionsa; andags to position the upper arm partition parallel to the ground
facing the tunnel opening.

e Behaviorb, should then move the upper arm partition through the tunpelids
ing a5 to push the arm towards the wall whie is utilized to keep the arm from
colliding with any of the tunnel walls.

by beharvior bo behavior

a3

a7

& 57

.

Figure 5.11 Desired robotic arm configuration for behavitsandbs.

5.4.4 Fitness Function

The fitness function for the robotic arm problem is choserftdly to maintain the overall
execution goals. The following rules are followed:
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The arm is not allowed to collide with the wall or the grountbilighout its
execution cycle. Any collision with the said entities caaiige agent to fall
its control attempt and a fitness value of zero is returned.

Any movement along the y-axis that moves the arm away frontatiget
causes the agent to incur a penalty proportional to the tlemidistance.

Any movement along the z-axis that moves the arm away frontetiget
causes the agent to incur a penalty proportional to the tlemidistance.

Once the entire network has concluded its execution a peisapplied
proportional to the distance separating the tip of the rotaotn and
the target sphere.

Given the final distance from the y-axd, the final distance from the target along the
z-axis,dz, and the final distance from the target along the x-akisthe fitness function
f is defined as:

f=dy+dp+d> (5.7)

5.4.5 Evolution Results

Due to the higher complexity of the presented problem, a olyoandividual count is
utilized for the evolutionary process. The dynamic allawabof individuals allows the
system to start with a high individual count and then gralguggcrease the count to a
minimum value as the system approaches the end of the emwéuyi cycle. The following
parameters are used to drive the evolutionary process:

Individuals (Minimum): 50
Individuals (Maximum): 200

Generations: 100
Crossoven 0.2
Pc 0.1
Pm 0.01

Table 5.4 Evolution parameters for the robotic arm problem.

The robotic arm evolution utilizes a two-phase approacmieffort to reach the de-
sired goals in a short duration of time. The first phase ewilie behavior presented by
b1, while the second phase expands the network training tadiedhe behavior presented
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by b,. The fitness function is structured in a manner that gragdaitces the tip of the
robotic arm closer to the tunnel opening by the end of theui@e of the first behavior.

Figure 5.15 shows the best performing individual represgritehaviorb; after 25
generations of evolution.

Figure 5.12 Best performing individual representing behaverafter 25 generations of
evolution.

We notice the assortment of urgency values that have beeheédor the different
actions performed. The urgency of action execution becaigesficantly more relevant
in the execution oby as the possibility of colliding with the wall or the groundnaich
higher. The urgency values evolved, along with the anglemands, guarantee that the
arm does not collide with any of the walls or the ground. Inidd, the fitness function
guarantees the selection of individuals achieving moraiprity to the target.

Actionsay anday contribute to the lateral movement of the arm, and we notieé t
the combination of angle commands given allow the top of fhpgeu arm partition to still
be close to the tunnel opening. Figure 5.15 shows the armigosif the best performing
individual after 25 generations of evolution.

As the evolution process continuous, we find that the gepeticess eventually elim-
inates actionag by deactivating it completely. This elimination allows tegstem to
achieve higher consistency by reducing the lateral movehksgping the arm closer to
the desired target position. The best performing netwopkesenting behavids; after
50 generations of evolution is shown in Figure 5.14.



CHAPTER 5. TESTING THE EVOLUTION PLATFORM 126

Figure 5.13 Arm position of best performing individual after 25 gen@vas of evolution.

Figure 5.14 Best performing individual representing behaverafter 50 generations of
evolution.

We notice that the angle and urgency commands of acipasdag are still in close
proximity to their associated values in Figure 5.15. Thel@egmmand associated with
actionay has converged to value small enough to maintain a relativigly fithess value.

After the first 50 generations of evolution, the second pludbe genetic process
is initiated through the inclusion of the second subnetwbsk This allows the genetic
process to evaluate the performance of each individual d®évincluding all associated
behaviors. Starting from a point already close to the tuopehing increases the chances
for finding a proper configuration that would allow the arm ¢thiave the goal. A desired
configuration would involve increasing the angle assodiatéh actiona; moving the
arm closer to the wall while decreasing the angle associatttdactionay in order to
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Figure 5.15 Arm position of best performing individual after 50 gen@vas of evolution.

keep the second arm partition level. This would allow the tyrmove through the tunnel
without colliding with any of the walls.

The final configuration of the trigger network after 100 gaiens of evolution is
shown in Figure 5.16. In the second phase of evolution, astig and ag, which are
responsible for the lateral movement of the arm, were ebiteicd by the evolutionary
process. The utilization of only actiorag and a; allows the system to converge to a
solution faster as both actions force the arm to move in actlne that is normal to the
wall surface.

The final position of the complete arm behavior after 100 gatiens of evolution
is shown in Figure 5.17. The genetic process was successiialving an individual
capable of reaching the desired evolution goals. The exeraequencing and urgency
were critical in allowing the arm to navigate the tunnel witih colliding with any of the
wall surfaces ultimately reaching a position close to thget

5.5 Conclusion

This chapter demonstrated several testing scenarioangjlirigger network evolution for
achieving successful control of articulated robotic dinues. It has been shown that the
network evolution methods presented are capable of acigelie desired goals for both
continuous PID-based control as well as complex execugguencing of joint actions.

In addition to the base network evolution, the careful aggtion of network guidance
has also been proven to increase the overall fithess of dwhis relative to unguided
evolution. This is accomplished through the simplificatairthe network structure by
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Figure 5.16 Final configuration of trigger network for the robotic armoplem after 100
generations of evolution.

reducing the number of variables involved in the geneticess. A reduced search space
increases the system likeliness for converging to a salutiat meets the preset goals.
The careful selection of evolution parameters, like gei@nasize as well as crossover
and mutation probabilities for example, also play a cruoiéé in the achievement of
desirable evolution results.
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Figure 5.17 Final robotic arm position after 100 generations of eviolut



Chapter 6

EVOLUTION OF ROBOTIC MOBILITY

6.1 Introduction

The guided genetic evolution methodologies have been pregas an efficient tool for
the evolution of autonomous robotic control. The previcapter presented several ex-
amples relating to the application of the genetic framewovkards the evolution of dif-
ferent types of robotic structures. The guidance of the gemeocess has also been
shown to increase the evolution efficiency by reducing tlaecdespace size allowing for
the achievement of higher fitness.

In this chapter, the more complex problem of controlling el robot is presented.
The number of degrees of freedom as well as the dynamics obbwic structure signif-
icantly complicates the control problem. Hence, we preadramework for the structur-
ing of the control problem to achieve biped mobility withikaown simulated environ-
ment. The robotic articulated structure will be presented@with the configuration of
each of the joints utilized. The trigger network layout veilso be presented to show the
execution sequencing of the different agent behaviors. details of the network guid-
ance applied to the network will be discussed to convey tleeedf the guidance process
on the convergence rate and the accuracy of the contratgirat

6.2 Robotic Structure

The structure of the articulated biped robot consists oftiplel body parts connected
through the use of hinge, universal and ball-and-socketgoilhe joint selection is made
based on the degrees of freedom required at each of thecghiats. For each of the joint
axis, low and high stop points are specified depending ongkeeatl range of motion for
the joint. Since the structure of the biped robot resemlilasdf a the human body, the
attributes of the human joints were used as the basis foifgperthe parameters for the
biped. The trigger network layout is dependant on the jomint as well as the number
of axis used at each joint, hence, the articulated struetaseconfigured to support the
minimum requirements for biped locomotion in an effort tmimiize the complexity of
the control problem.

130
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In order to achieve maximum efficiency in the structuringted biped, a direct map-
ping was utilized between the average human body dynamdttha of the biped robot.
This method allowed for the approximation of proper joirddtions to connect the differ-
ent body parts. Figure 6.1 shows the general articulatedtsite for the biped robot. As
seen in the figure, boxes were used as the main primitive tshjepresenting the differ-
ent body parts. The utilization of primitive object typesasthically improved the real-time
performance of the system without a significant impact orsiimellation accuracy. A uni-
form density was used for all parts utilized in the robotitsture; hence, the weight of
each body part was determined based on volume.

£
AN

Figure 6.1 General articulation structure for biped robot.

6.2.1 Lower Section Articulation

The lower section of the robotic agent consists of the thitdgs, and feet. Three body
parts were utilized on each side of the body while maintgrsymmetry between both
sides. Table 6.1 shows the dimensions and orientation obalg parts utilized in the
lower section of the articulated structure.

The joint coordinates of the lower section of the biped amshin Figure 6.2. For
each joint, The x, y and z coordinates are given indicatiegaimt anchor. The knee and
toe joints for both legs are structured as hinge joints, Wwhieans that they operate along
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Part Position(x, v, z) Dimensions (X, Y, z) Orientation(x, yz)
Left Toe (9.5, 0.0, 0.0) (1.27,0.76, 0.63) (0.0,0.0,0.0)
Left Foot (3.32,1.92,0.0) (1.42,3.07,1.19) (0.0,0.0)0.0
Left Leg (3.32,1.92, 4.85) (1.67, 2.06, 7.31) (-0.10, 04.0)
Left Thigh  (2.80, 2.05, 11.90) (1.691, 2.08, 8.10) (0, 0a.D)

Right Toe (-9.5,0.0, 0.0) (1.27,0.76, 0.63) (0.0, 0.0, 0.0)
Right Foot  (-3.32,1.92, 0.0) (1.42,3.07,1.19) (0.0,0.0)0
Right Leg (-3.32,1.92,4.85) (1.67,2.06, 7.31) (-0.101100.0)
Right Thigh (-2.80, 2.05, 11.90) (1.691, 2.08, 8.10) (01700.0)

Table 6.1 Parameters utilized for the lower section of the robotiacure.

a single axis. The ankle joint, however, is structured asieeusal joint which operates

along two axis allowing the controller to rotate the foot @pds and downwards as well
as to the sides.

Fight Fnee Left Fnee
(238,167,729 | T 233,167,729
Fight Ankle
(-3.22, 2.42, 1.19)
Left Akl
RightToe =i \ (ﬂz, 54 1.19)
(332 033 034) s ~=

- -
e Left Toe

(.32, 038 0.34)

Figure 6.2 Biped lower section joint coordinates.

Joint Axis 1 AXis 2

Left Toe (-0.52, 0.87)

Left Ankle  (-0.52,1.31)  (-0.43, 0.43)
Left Knee  (-0.001, 2.97))

Right Toe (-0.52,0.87)

Right Ankle (-0.52,1.31)  (-0.43, 0.43)
Right Knee (-0.001, 2.97))

Table 6.2 Low and high stop values for lower section joints.
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Table 6.2 shows the low and high stop values for each of tim godis for the lower
section of the biped. A single set of values is specified fohexd the toe and knee joints.
Two sets of stop values are provided for the knee joint; tist $et given (axis 1) relates
to the up/down rotation, while the second set (axis 2) relai¢he side rotation of the an-
kle. Although the controller aims to maintain specific artation angles at all instances,
the low and high stop points guard against the occurrenceagular configurations if
excessive forces are applied to one or more of the body parts.

6.2.2 Middle Section Articulation

The middle section of the biped consists of the hip and toastspThe hip connects to the
legs utilizing ball-and-socket joints, which operate orethaxis. The torso also connects
to the hip utilizing a ball-and-socket. In addition, thesmrconnects to the upper body
parts, consisting of the arms and head. Table 6.3 showsitiendions and orientation of
the body parts utilized in the middle section of the artitedestructure, while Figure 6.3
shows the coordinates utilized for the placement of eacheoftiddle section joints.

Part Position(x,y, z) Dimensions (X,y, z) Orientation(x, yz)
Hip (0.0, 2.05,16.8) (4.37,3.27,3.81) (0.0, 0.0, 0.0)
Torso (0.0, 2.05,20.09) (6.27,4.35,6.91) (0.0,0.0,0.0)

Table 6.3 Parameters utilized for the middle section of the robdtiecture.

Back
(000 2.05 16.62)

.Y

=t |
Right Hip Left Hip
(128,205 1438  * \ﬁ( T 129205 1484)

Figure 6.3 Biped middle section joint coordinates.

El

As mentioned above, a ball-and-socket joint, represemii@gvaist, is used to connect
the torso to the hip. The joint operates on three axis allgon movement of the torso in
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any direction as well as for rotation. The agent’s abilitydtate the upper body section
forwards, backwards or to the side significantly improvesdgent’s balancing abilities
while walking. The hip joints for both legs consist of balieksocket joints operating
on three axis. This allows for the legs to rotate in any dicgctesembling known hip
movement. Table 6.4 shows the low and high stop values fdr efthe joint axis for the
middle section of the biped.

Joint Axis 1 AXis 2 AXxis 3

Waist (-1.31,0.52) (-0.52,0.52) (-0.52,0.52)
LeftHip  (-1.39,0.34) (-0.61,0.61) (-0.69, 0.69)
Right Hip (-0.34,1.39) (-0.61,0.61) (-0.69, 0.69)

Table 6.4 Low and high stop values for middle section joints.

The first axis of the waist joint controls the forwards andidveards movement, while
the second axis controls the lateral movement. Both higgaitilize the same config-
uration where the first axis controls the lateral movemerd,decond axis controls the
rotation of each leg, while the third axis controls the forasand backwards movement.

6.2.3 Upper Section Articulation

The upper section of the robotic structure consists of tte hghoulders and arms. Al-
though the upper body parts do not contribute directly tontidility of the robot, they
play a crucial role in the task of keeping the robot balancéde shoulders and arms
also paly a role in minimizing the swaying side effect thatws during the execution of
the walking behavior. Table 6.5 shows the dimensions arehtation of the body parts
utilized in the upper section of the articulated structure.

Part Position(x, v, z) Dimensions (X, y, z) Orientation(x, yz)
Head (0.0,2.05,24.85) (2.54,3.22,3.64) (0.0, 0.0, 0.0)
Left Shoulder  (5.60, 2.05, 19.56) (4.92,2.12, 1.94) (0.0, 0.0)

Left Arm (8.94, 2.75, 21.14)  (3.85, 1.55, 1.29) (0.0,-00D)
Right Shoulder (-5.60, 2.05,19.5) (4.92, 2.12, 1.94) (0,0.0)

Right Arm (-8.94,2.75,21.14) (3.85,1.55, 1.29) (0.0, 0@D)

Table 6.5 Parameters utilized for the upper section of the robotiocstire.

The neck is connected directly to the torso utilizing a laat-socket joint that would
allow rotation in any direction. A ball-and-socket jointasso used for the shoulders
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to allow freedom of motion along any axis. The elbows, howeutlize a hinge joint
allowing rotation along a single axis. The exact joint anct@ordinates are shown in
Figure 6.4. Table 6.6 shows the low and high stop values fdn e&the joint axis for the
upper section of the biped.

—— MNeck

- (0.00, 2.05, 22.02)
Right Shoulder / Left Showlder
(-2.89, 2.75, 21.14) \ s (2.89, 2.75 21.14)

e :
\ Left Arm

(6.23, 3.06, 20.8)

Right Arm /‘
(-6.28, 2.06 20.8)

Figure 6.4 Biped upper section joint coordinates.

Joint Axis 1 AXis 2 AXis 3

Neck (-1.13,1.13) (-1.13,1.13)

Left Shoulder  (-1.22,1.57) (-0.43,0.43) (-1.39,1.71)
Left Arm (-0.01, 1.31)

Right Shoulder (-1.57,1.22) (-0.43,0.43) (-1.71, 1.39)
Right Arm (-1.31,0.01)

Table 6.6 Low and high stop values for Upper section joints.

6.2.4 Polygon-based Representation

In order to enhance the realism of the agent rendering, aypolpased representation of
each of the body parts is utilized. A modeled object is usedHe visual representation
of each part of the articulated structure to better reptesemssociated purpose, then
the modeled object is positioned to be encapsulated by thete object being utilized
for articulation. The primitive objects are still the maiarfs used for volume calcula-
tions as well as for collision detection and avoidance, lyetuse of the modelled objects
significantly enhanced the realistic rendering of the ramsttucture.

Figure 6.5 shows a polygonal wire frame rendering of the tickegent. The fig-
ure also shows the location of all joint anchors which cqroesl to the exact positions
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Figure 6.5 Polygonal wire frame rendering of the robotic agent shovihre position of
joint anchors.

Figure 6.8 Shaded rendering of the robotic agent.



CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 137
utilized with the primitive object types. Figure 6.6 showshaded rendering of the agent.

6.3 Action Specifications

The actions to be utilized in the evolutionary process eethitectly to the degrees of
freedom associated with each of the articulation jointschEaxis of each joint must
have an associated direct control action configured to nfavbady parts about the joint.
Additional actions may be used to incorporate PID or styate@sed control in the overall
strategy. The minimum and maximum angles associated wih é@ect control action
are set to correspond to the low and high axis stop valuegcasely.

Table 6.7 shows the action specifications of the lower sedfdhe biped. The over-
all network complexity was reduced through the represemtadhe entire foot as a sin-
gle object. Hence, the toe joints were fixed at a rotationgleanf zero. Preliminary

experimentations have demonstrated good behavioraltsesiilizing a single object to
represent the foot.

Action Joint Axis Description

=l Left Ankle 1 Front/Back movement
a Left Ankle 2 Lateral movement

az Left Knee 1 Lateral movement

au Right Ankle 1 Front/Back movement
as Right Ankle 2  Lateral movement

as Right Knee 1  Front/Back movement

Table 6.7 Biped Action specifications for lower section.

The action specifications for the middle section are showRigure 6.8. The hip
joints are the two most essential components of the agemfslity. They control both
forward-stepping behavior as well as the side-steppingaehof the robot.

Table 6.9 shows the action specifications of the upper seofithe biped. The arms
and neck do not contribute directly to the stepping actian they contribute to the bal-
ancing and stability of the biped.

In addition to the direct joint control actions listed, setePID control actions are
utilized to maintain essential desired configurations. fidil®wing list details the PID
control actions used as part of the biped stepping motion:

e ays - Waist Center: In order to assist in the continuous balanoirthe biped, this
action is used to keep the upper body of the agent centerde Wia weight is
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Action Joint Axis Description

ay Left Hip 1  Front/Back movement
ag Left Hip 2  Leg rotation

ag Left Hip 3  Lateral movement

aio RightHip 1  Front/Back movement
ail RightHip 2  Leg rotation

ai2 RightHip 3  Lateral movement

ai3 Waist 1 Front/Back movement
a4 Waist 2  Lateral movement

Table 6.8 Biped Action specifications for middle section.

Action Joint

Axis Description

ais Left Shoulder 1  Front/Back movement
e Left Shoulder 2  Armrotation

a7 Left Shoulder 3 Lateral movement

ais Left Arm 1 Front/Back movement

a9 Right Shoulder 1 Front/Back movement
a0 Right Shoulder 2 Arm rotation

as1 Right Shoulder 3  Lateral movement

a2 Right Arm 3 Front/Back movement

a3 Neck 1 Front/Back movement

a4 Neck 2 Lateral movement

Table 6.9 Biped Action specifications for upper section.

shifting from side to side.

e ays - Left Ankle Level: In preparation for meeting the groundrneaafter stepping
using the left foot, the foot is kept horizontal to the grotoadnaximize the agent’s
stability through the stepping motion.

e ay7- Right Ankle Level: The same foot leveling strategy is apg@lto the right foot
as the right leg meets the ground after stepping with the fagit.

6.4 Network Layout

The biped mobility is focused around several sub-behauiwas must be executed in
succession to allow the agent to attain a walking behavibe main network layout is
designed to reflect the different parts of the overall wajkimotion. In addition, the net-
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work shows the relationships that exist between the diffigvarts as well as the execution
sequencing that must be followed in order to achieve suftdes®bility. The different
phases involved in the walking motion are listed as follows:

e Agent shifts weight to leg A

e Agent prepares leg B for stepping

e Agent steps forward using leg B while shifting weight to it
e Agent steps forward using leg A while shifting weight to it

Maintaining continuous balance while executing all phaisésd is clearly a high pri-
ority of the execution strategy. Balancing is mostly achaethrough the careful execution
of direct control sequences. Figure 6.7 shows the layout®ihtain phases involved in
the biped walking motion.

shift A

N

Prepare B

Y

stepfShift B ‘

stepfShift A 4>©

Figure 6.7 Main phases of the biped walking motion.

F

The first phase of the walking motion involves shifting thérenwveight of the robot to
one foot in preparation for stepping with the other. In theegiscenario, the agent starts
its motion balanced on both feet, then shifts its weight #oright foot while maintaining
its balance. A direct joint control strategy must be createdllow the agent to steadily
shift its weight without making any actions that would caiide lose its balance. Each
joint in the articulated body could potentially be involviedhe first phase of the walking
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motion, however, in order to reduce the complexity of thgger network, guidance is
applied in order to minimize the number of joint axis. Thenjaxis selected for the first
phase of the motion, as well as the reasoning behind thetisglecare classified in the
following list.

e Left Ankle In order to initiate a motion towards the right foot, thet lfikle is used
to push the body laterally towards the right.

¢ Right Ankle Shifting the agent’s weight to the left foot causes a shifthie center
of mass of the body. Adjusting the angle of the right anklatj@nables the agent
to balance its weight on just one foot.

e Left Hip: Moving the right hip laterally also allows the agent to pughbody
towards the other foot assisting in the weight transfer.

¢ Right Hip The proper positioning of the right hip assists in balagdine entire
body in the new desired position as the center of mass is nove right.

Once the agent is balanced on the right foot, the left leg iegwloser to the body
in preparation for the stepping action. This involves comdiag the hip joint to pull the
leg closer while applying changes to the knee and ankleiposit The joint axis to be
manipulated in this phase of the motion are classified asvistl

e Left Hip: At this stage, the hip is pulled closer to the body prior teniehing the
body forward.

e Left Knee The entire leg is placed in a suitable position for stepfupgulling the
leg up utilizing the hip joint as well as the bending of the &fjint.

e Left Ankle The ankle must be positioned properly in order to meet tbarmul after
the stepping action has been carried out.

The actual stepping action involves utilizing all lower lggdints to achieve the de-
sired goal. The left foot is launched forward by direct jaiontrol being applied to the
hip and knee. At the same time, the right hip and ankle are tesptbpel the body for-
ward. The following direct joint control actions are appli® the lower body section of
the piped in order to carry out a stepping action with theflst:

e Left Hip: The left leg is launched forward and outward in order to ntleetground
after propelling the body forward.
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e Left Knee In order for the left leg to clear the ground, the lower pdrthe leg is
raised by bending the left knee. During the stepping actioa)eg is straightened
once more in order to meet the ground.

e Right Hip The backward rotation of the right hip helps propel the rentiody
forward due to the friction with the ground plane.

e Right Ankle The right ankle also contributes to the forward propuldigrassisting
in leaning the entire body forward.

Once the left foot stepping motion has been completed andethéot meets the
ground, the body is given a brief moment to balance itself tthe entire process is re-
peated once more for the right foot. The same parametersfosdite left side of the
body are utilized for the right side in order to reach a cybkhavior that would allow
the biped to achieve continuous walking. The main triggéwoek layout for the biped
walking problem is shown in Figure 6.8.

6.5 Network Evolution

The evolution of the biped trigger network is performed owarltiple phases allowing
the network to converge to a successful solution at each kefere proceeding to the
next. The most essential part in the evolution of each phasdwes around the careful
structuring of the associated fitness function. For eaclsghhe fitness function is for-
mulated in direct correspondence to the specific goals tahiewed by the subnetwork.
This section describes the main goals behind each of theonletvehaviors as well as the
formulation of the fitness function for achieving those goal
Subnetworkb; is responsible for shifting the weight of the biped to théhtifpot in

order to free the left foot for stepping. The motion must beoagplished in a smooth
manner in order to maintain balance and prevent the biped énershooting its desired
destination which would result in a loss of balance. Theotwihg guidelines are utilized
in the formulation of the fitness function governing the ewian of bs:

e The location of the right foot must remain unchanged. A cleanghe location of
the foot results in the application of a penalty proportierta the distance associ-
ated with the foot displacement.

e The behavior aims to move the center of gravity of the bodyheoright without
loss of balance. Hence, a reward is applied based on thevagéhdisplacement of
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/N

Figure 6.8 Main trigger network for biped walking motion.
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the center of mass.

e Loss of balance results in the failure of the agent in achgitis goals. In order to
allow for the gradual achievement of successful balanemgyard is applied based
on the number of time steps in which the agent remains batarceaximum time
step count is selected to signify successful balancing deeroto proceed with the
next individual in the generation.

Given the right foot displacemend;, the rightward center of gravity displacement,
dc, and the number of time steps through which the agent hasmethhalanced;, the
fitness function is formulated as follows:

f=t+d>—a?

Table 6.10 shows the parameters utilized in the evolutiaim@b; subnetwork. The
same set of parameters were also used in the evolution ahalt aetwork behaviors.

Individuals: 50
Generations: 50
Crossover 0.2
Pc 0.1
Pm 0.01

Table 6.10 Evolution parameters for biped evolution.

The genetic process was successful in converging to a coafiga that fulfills the
goals set forth. The agent was able to shift its entire weimtite right foot without losing
balance. The center of gravity was successfully moved toitle a sufficient distance
for the weight transfer to be successful without jeopamdjzihe agent’s stability. The
final values of the fitness function parameters are as follows

t 200 (successful balancing)
dc 2.31
ds 0.03

The final direct joint control parameters are shown in Takléd 6The final joint angles
are given in degrees. In order to simplify the trigger netnaomd to minimize the number
of evolution variables, the execution urgency of all fouti@es involved was preset to a
value of 2. The posture of the biped after the execution ofothibehavior is shown in
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Action Angle

a 19.73
as 15.35
ay -30.24
aio -32.07

Table 6.11 Final direct joint control parameters for behavimr

R

e

Figure 6.9 Biped posture after the execution of the evoltedehavior.

Figure 6.9. We notice that the biped is now leaning to thetngth all its weight on the
right foot in preparation for stepping with the left foot.

Once the articulated structure is stable and balanced orighefoot, the left foot
must be positioned properly in order for the stepping motmnommence. This is ac-
complished by pulling the leg closer to the body and bendiggkinee in order to clear
the ground while stepping. This process must be completde wiaintaining the overall
balance of the structure.

The structuring of the fitness function which governs thdwwan of behaviorb, is
based upon the requirement of maintaining the balance dfiffesl as well as minimizing
the change in the position of the center of gravity. The riglot position should also
remain static through out the behavior. Given the right fdisplacementd;, and the
center of gravity displacemertg, the fitness function is formulated as follows:
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f = —|dc|°— |df|°

The final direct joint control parameters for behavwgrare shown in Table 6.12. The
execution urgency of all four actions involved was preset t@lue of 2. The posture of
the biped after the execution of the behavior is shown in Figure 6.10.

Action Angle

as 47.36
a 15.65
az -24.94
ag -22.81

Table 6.12 Final direct joint control parameters for behavipr

Figure 6.10 Biped posture after the execution of the evolbadehavior.

Once the articulated structure is set for the walking motmmake place, a cyclic
strategy must be established to utilize the left and rigig la order to achieve continuous
forward motion. Behaviords and b, are responsible for stepping with the left foot,
while behaviordys andbg are responsible for stepping with the right. The same contro
parameters utilized for the stepping with the left side arbe applied to controlling the
right side in a symmetric manner. This strategy reduces ¢ingpéexity of the stepping
problem and promotes the cyclic stability of the entire roioti



CHAPTER 6. EVOLUTION OF ROBOTIC MOBILITY 146

The fitness function associated with the stepping motioaset on the agent’s ability
to propel itself forward within a specific duration of timen érder for the motion to be
successful, the balance of the biped must be maintaineldaritire duration. The fitness
value is assigned based on the distance by the biped withatpdreing applied in the
event that the biped loses its balance. Given the biped fordiaplacementdy, and the
deviation from the axis linajy, the fitness function, given that the biped does not lose its
balance, is formulated as follows:

f=dy—dy®
If the biped does lose its balance before the end of the stgmhiration, a penalty is
applied reducing the agent’s fitness, and the fitness fun@itormulated as follows:

Figure 6.11 shows the evolution progression of the bipeppétg motion over 50
generations of evolution using the genetic parameteeglist Table 6.10.

110 T T T T T T T T T

100

90

80

70

60

50 |

Average Fitness

40

30

20

10 -

O 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Generation Number

Figure 6.11 Evolution progression of the biped stepping motion oveg&ferations.

The evolution progression shows a steady and gradual seiaaverage population
fitness over the 50 generations of evolution. The bipedaihytivould fall within the first
few steps as shown in Figure 6.12, however, a strategy faesstul stepping is slowly
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developed through the genetic selection and evolutionigder network configurations
that exhibit the most success in the forward mobility of tield. Figures 6.13 to 6.17
show the entire successful stepping motion of the biped.

The execution urgency of all four actions involved was présa value of 2. Actions
az andag represent the knee bending in the stepping leg during tippistg motion. The
bending of the knee involves a direct action to bend the kmekeamother to straighten
it before making contact with the ground. The execution nogeof both the first and
the second knee actions was set to a value of 1. The secondhkgbewas set to zero
to guarantee the straightening of the entire leg beforehiogcthe ground. The final

direct joint control parameters for the first phase of cystepping behavior are shown in
Table 6.13.

Action Angle
a .8.05
as 7.51
as 42.17
az 12.92
ag -10.13
aio -13.26
aio -9.94
ai3 14.79

Table 6.13 Final direct joint control parameters for the first phaséhef cyclic stepping
behavior.

The same set of evolved parameters are is used in the secasé phthe cyclic
stepping motion represented by behaviogsandbg. This involves executing the same
direct control strategy on the opposite side of the bipeds S$tnategy produces favorable
results, as shown in Figure 6.11.

6.6 Conclusion

Guided genetic evolution methodologies has been showndecessfully represent and
solve complex robotic control problems, including the peaib of biped robot balancing
and walking. The first phase of the solution involves theespntation of the robot control
abilities through the utilization of the trigger networkwstture. The utilization of trigger
network encoding reduces the demands on the designer indeega determining the
exact control components required for achieving a spe@salt. Instead, only the main
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candidate components that may contribute to achievingriegepgoals are required.

The trigger network evolution algorithm allows the gengtiocess to choose the best
components suitable for achieving the desired goals basdétieoperformance of each
agent. The careful formulation of an appropriate fitnesstion guarantees the elim-
ination of control strategies that reduce the system perdoice while maximizing the
presence of strategies that move the population closerneecging to an appropriate
solution.

Although the representation and guidance methodologlew dbr significant flex-
ibility in the formulation of the control problem, the levef guidance utilized greatly
affects the outcome of the genetic process as well as thesreof the results. A higher
guidance level allows the genetic process to convergerfastaddition, reliable and pre-
cise guidance has been shown to significantly improve thédorgrol results produced
by the system.

Figure 6.12 Stepping motion: biped falling during the initial phasésraining.
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Figure 6.13 Stepping motion: beginning of stepping motion utilizirgtfoot.

Figure 6.14 Stepping motion: left foot makes contact with the ground.
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I

Figure 6.15 Stepping motion: continued stepping utilizing right foot

Figure 6.16 Stepping motion: right foot makes contact with the ground.
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Figure 6.17 Stepping motion: continued stepping utilizing left foot.



Chapter 7

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the methodologies presentedsidigsertation in relation to the
representation and evolution of robotic controllers fa tbal-time control of articulated
robotic structures. The chapter will also cover the chaiézhfaced by the proposed
framework as well as suggestions for future work.

7.1 Summary of Work

Autonomous robotic control is an extremely intriguing acéatudy that could pave the
way for many beneficial applications. However, the contfariculated structures has
proven to be a problem of extreme difficulty due to the complature of the internal
dynamics of the robot as well as the complexity of the inteoas between the robot
and the environment. In order to conquer such complexityprganized algorithmic
framework is needed for the efficient encoding and trainihgobotic controllers in a
manner that circumvents some of the existing hurdles.

This dissertation has explored and addressed the problarti@ilated robotic control
through three main contributions:

1. A new connectionist model, label@dgger Networksvas created for the encoding
of agent attributes and control capabilities. The modelrsfa high level descriptive
structure for the representation of control strategiesgtlavel of sophistication
for the control of articulated robots. Trigger networkseofa time-based model
for the description of execution sequencing as well as obotgency associated
with each of the robotic joints. The network structure hagvpn successful in
the representation of robotic behaviors associated wibletio arms, four-legged
robots, as well as biped robots.

2. A genetic evolution algorithm was formulated for the exmn of trigger networks
based on one or more fitness functions associated with theeddsehaviors. The
algorithms presented as part of the evolution framewodkalfor the processing
of trigger networks through genetic selection, crossosad mutation operators
over multiple generations in an effort to achieve succéssfiillment of the preset
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behavioral goals. The genetic algorithms proposed andemehted have proven
to be highly successful in training different types of cofiers for performing com-
plex tasks through the utilization of joint control.

3. Mechanisms for guiding the genetic process have beenutated in order to re-
duce the network convergence time and increase the quétite produced results.
The guidance methodologies have been proven to systefhaiizaease the over-
all fitness of individuals as well as reduce the evolutioretimquired for achieving
the desired evolution goals.

7.2 Limitations of the Proposed Framework

Through the utilization of guided genetic evolution, diefat classes of robots have been
trained to successfully perform desired tasks with a camatnle level of accuracy. In
order to transfer the training methodologies to real robatside of the simulation envi-
ronment, a higher level of uncertainty has to be introduogalthe training algorithms in
order to create agents that are more reliably fit for realrenvinents. Real world param-
eters introduce a significant level of unpredictabilitytte tontrol equation. In order for
the simulated environment to better represent real-woyiththics, a level of noise may
be included as part of the input signal acquisition and jooritrol modules. The intro-
duction of noise and the evaluation of its effect on the agehiavior would be essential
for the creation of robotic agents that behave reliably ai-weorld environments.

The implementation of genetic training methodologies nexgua significant amount
of computational power in order to achieve results withirasonable duration of time.
In order to evolve controllers utilizing low computatiormdwer, a significant amount of
guidance must be applied to the trigger network to reduceahgplexity of the problem
being evolved. However, the application of excessive ngtwaidance restricts the evo-
lutionary path of the system and limits the search space tegeeé that might produce
harmful results. A balance must be achieved between theonletyuidance and comput-
ing power utilization in order to maintain the essence ofglmretic process and achieve
the desired training goals.

7.3 Future Directions

Several areas of the guided genetic evolution framewornkiredurther investigation:
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1. The introduction of noise in the evolution framework sladee investigated in order
to achieve higher levels of reliable fitness of the evolvdzbiiw agents.

2. Alternative evolutionary means should be examined asilplescandidates for the
enhancement of trigger network evolution.

3. The combination of trigger networks, genetic evolutiamd neural methodologies
should be investigated as a possible grouping that couldrexghthe training pro-
cess.

4. Additional testing should be performed on trigger netn@rolution. Such testing
may introduce areas of possible enhancements and modifisati

5. The utilization of agent state determination and tramsimg, on a larger scale,
should be investigated as a tool that could enable a higliel & robotic control.
This is achieved through awareness of robotic states, thtydb apply intelligent
transitions between known states, as well as the abilitgdoiae knowledge of new
states that were previously unknown to the agent.



Appendix A
RIGID BODY ARTICULATION

A.1 Introduction

In order to allow for the evaluation and optimization of th@lationary techniques pre-
sented in this thesis, a need existed for the developmerdiofudation environment based
on computational models of the entities being studied. Tinalation environment offers
a crucial visual dimension through which the various aspetthe system can be mon-
itored and enhanced. Since this study revolves around tekigent control of complex
articulated bodies, a comprehensive physical simulatystesn is needed to model the
different system components as well as their interactidhs. simulation physics engine
is responsible for the numeric calculations and transftiona determining the position
and orientation of bodies as they interact with each othetla®environment. The engine
also works on maintaining the physical constraints thaegovhe different applications
of the forces and torques being exherted on the articulatedtsres. The following list
demonstrates the essential parts of the physics engineadéedachieving the desired
simulation goals:

e Particle State Management: The environment has to offesigience of particle
states. The physical properties of the bodies need to beateturepresented and
utilized in order to produce accurate simulation models.

e Numeric Integration: In order to evolve the system from oiagesto another, nu-
merical methods are utilized to perform the needed caliomstand transforma-
tions. The numerical errors produced by the methods beifigadt has to be con-
sidered in order to achieve the accuracy requirements gétbg the simulation.

e Geometric Body Representation: Geometric structuresedted simulation bodies
in order to achieve accurate representation of the enbgesy evolved. Primitive
geometric shapes as well as more complex polyhedra-basgelsmoaybe utilized
as representation of articulated bodies.

e Collision Detection and Response: The ability to enforca-penetrating con-
straints within the system is crucial. Hence, the enginetbasovide means for
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detecting collisions between objects as well as the numlemethods required for
resolving such collisions with physical accuracy.

¢ Joint Constraints: In addition to non-penetrating constsajoint-based constraints
that allows for the modeling of articulated structures isdex. Different types of
joints may be used on different parts of the structure. Ataimim, the system is
to offer support for hinge, universal, and ball and sockpétyints.

e Dynamic Force and Torque Control: Finally, the ability taondynically apply forces
and torques to different parts of the articulated structiseneeded for the simula-
tion of muscle or actuator controls. The system is to offeiddor applying such
elements at different levels depending on the desired memebeing simulated.

A.2 Rigid Body Kinematics

A system based on rigid body dynamics is suitable for the desegn of the physical
simulation engine needed. A rigid body can be viewed as besngposed of a system of
particles. Since the general shape of the body is rigid, #negbes do not migrate within
the body, so the mass within the body remains consistenslyilolited. This important
characteristic allows for the analysis of motion of a rigadllg using only the linear motion
of its center of mass as well as the angular motion abouttiecef mass. In essence, the
body can be treated as a single particle within the environinstead of accounting for
the various particles that make up the body. Consequeh#ysystem gains performance
by ignoring deformation calculations and low level pagioianagement without harming
the accuracy of the produced results. Soft contact conssreduld be applied to simulate
the elasticity of collisions, which in reality would occuue to object deformations.

In addition to the motion characteristics, the physicarahteristics of a rigid body is
also essential for the implementation of collision detatind resolution. The geometric
structure of an object as well as its inertial propettim® used to describe the shape of a
body as well as its internal structure which affects its nthssibution.

This discussion on rigid body dynamics refers to and coneteseme of the content
presented by Baraff [5],[6],[7],[8],[9],[10],[11], Ebbr[?], Lengyl [78], Bergen [15] and
Bourg[18], as well as other content with references addeztevlppropriate. Baraff gives
a very thorough and detailed presentation of physicalletasodeling and rigid body
dynamics. Eberly expands the discussion to cover the simedtus numeric resolution of

1The body’s inertial properties are based on the associaeohetric structure and mass distribution
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multiple contact points using Linear Complementarity. gg@presents essential mathe-
matical topics relating to computer simulations, while dgar offers a thorough coverage
of collision detection techniques and their applicationphysical simulation.

A.2.1 Position and Orientation

A rigid body can undergo rotation and translation, so gives geometric shape of the
body, we use the vecto(t) and the 3 x 3 rotation matriR(t) to describe the position
and orientation of the body respectively. The veot@y is used to translate the body to
the proper world-space position. The vector describes tis@ipn of the body’s center
of mass in space at tinte Since each body is represented as a single particle, tigkesi
vector is sufficient for describing the body’s position. TGemmetric shape of the body is
attached to its center of mass, so the polygonal structutteedbody is rendered relative
to its position given by(t).

Similarly, R(t) is used to orient the body transforming the associated gemsbape
from body space into world space as seen in Figure A.1. Tasistnecessary for detect-
ing collision and determining collision points within thiesilation. Several methods can
be used to describe the orientation of the body. The rotatiatmix and quaternion repre-
sentations are the most common and most efficient methodsgoesenting rotation.

body space wotld space

F

Figure A.1 The axes of the body representedxpyandz are transformed t&',y andZ
wherex' = R(t)x, y = R(t)y andZ = R(t)z

Given the orientation heading attituded, and banky, the orientation matriR(t) is
defined as:
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rig riz ris
R(t) =1 ra1 ra2 ro3 (A.1)
r31 rs2 a3
Where:

ri1 = cog®)cog0O)

r12 = sin(®) sin(y) — cog P) sin(©) sin(P)

ri3 = cog®)sin(©) sin(y) + sin(P) cogyY)

rz1=sin(®)

roo = cog©)coqy) (A.2)

roz= —cogO)sin(y)

rzp = —sin(®)cogO)

raz = sin(®) sin(®) cog ) + cog P) sin(Y)
rsz3= —sin(®)sin(®) sin(Y) + cogP) cogY)

Unit quaternions may also be utilized for the represemadiorotation. The use of a
guaternion is advantageous over the use of a rotation nmesriixstores the rotation data
using four components, whereas the rotation matrix reptaen uses nine parameters.
Reducing the number of parameters avoids the need for cgilynent to compensate
for matrix drift. This drift accumulates within the simula as a result of performing
operations on matrices using finite point precision. In ofde a quaternion to define
rotation, it must be unit length. However, error buildup e tquaternion calculations
can result in variations in its length. This can be correttedormalizing the quaternion
which is significantly less costly that combating matrixtari

Given the orientation heading attituded, and bankp, the quaternion is defined as:

cos(%) cos(9) cos(%) +sin(2)sin(9)sin($)
Jo : : :
oo | @ | sm(%) cos(9) cos($) —cos( 2) sin(9)sin(2) A3
% cos(2)sin(9) cos(%) +sin(2) cos(9)sin(%) '
s cos(2) cos(9)sin(%) —sin(2)sin(2) cos(%)
A.2.2 Linear and Angular Velocity

Givenx(t) andR(t) defining the position and orientation of the body at timee define
x andR(t) to describe how the position and orientation of the body geasver time. We
also define the vectar(t) = x to describe the velocity of the translationxdf) over time.
The vectorx(t) andv(t) are defined by the following formula:
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v(t) = %x(t)

We also define the vectou(t) to describe the axis about which the body rotates. The
rate of rotation is described by the magnitudeogf). The relationship betweeR(t) and
w(t) is not as straight forward as thatxt) andv(t). The rate of change of the body’s
orientation is defined as the product of the vecdr) and the matrixR(t).

R(t) = w(t) * R(t) (A.4)

afi)

vt

Figure A.2 Linear velocity, represented bxt), and angular velocity, represented by
w(t), of a rigid body.

A.2.3 Linear and Angular Momentum

Linear momentum is the tendency of a body moving in a certagtton to maintain its
speed and direction of motion. The linear momen®ii) of a particle is defined as the
product of its mas# and velocityv(t).

P(t) = Mv(t) (A.5)
and since M is a constani(t) = %.

The concept of linear momentum also allows for the expressiahe effect of the
total forceF (t) applied on arigid body. The change in linear momenR(t) is equivalent
to the value of the force applied.

P(t) =F(t) (A.6)
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The angular momentum of a rigid body is defined as the produbeanoment of in-
ertia and the angular velocity. Simply put, as a body spimgita particular axis, angular
momentum is the tendency of a rotating body to maintain istimnal speed and axis. If
no external torque is applied, the angular momentum of tlgy l®conserved. Given the
angular velocityw(t) and the body’snertia tensor [t), which is a 3x3 matrix that de-
scribes the body’s mass distribution relative to its cenfenass, the angular momentum
L(t) is defined as

L(t) =1(t)w(t) (A.7)

Analogous to the relation between linear momentum and foveebtain the same result
for angular momenturh(t) and torque(t).

L(t) =1(t) (A.8)

A.2.4 The Inertia Tensor

The inertia tensol(t) is a 3 x 3 matrix that describes the body’s mass distributiwh a
how it is affected by angular velocity. The inertia tensar ba considered a scaling factor
between the body’s angular momentiufi) and angular velocityo(t). 1(t) is usually
computed in body space and then transformed to world spazaty out calculations. It
is defined as the matrix:
[P +2)dV  —[(xydV  —[(x2dV
=| —[(xydV [(+Z)dV —[(y2dV (A.9)
—[(x2dV  —[(y2dV [(+y3)dV

The integrals are over the volume of the body. If the body isrpke primitive shape
with evenly distributed mass, then the elements$(bf have a simple closed form solu-
tion. However, if the shape or mass distribution of the badgore complex, numerical
methods are required to accurately calculate the inersore

A.2.5 Body State Vector

Now that we have concluded the discussion of the differentpmnents that constitute
the state of any body within our simulation, we define theestdta body at time t as a
vector X(t) which is defined by the body’s center of mass parsix(t), orientation matrix
R(t), linear momentum P(t) and angular momentum L(t).

2as defined by Baraff[11]
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x

(t

Xt = | o (A.10)
(t

— U X

At timet, the auxiliary quantities, inertia tenskt), angular velocityw(t) and linear
velocity v(t) can be computed as [32]

1(t) = R(t)lboayR (1)
w(t) =17E)L(t) (A1)
v(t) =P(t)/M

wherelpogyis the inertia tensor in body space and M is the mass of the.body

A.2.6 Integrating the Equations of Motion

The Euler integration formula utilizes a Taylor series expan allowing for the approx-
imation of the particle state vector at time t+dt given theestvector at time t as well as
its derivative. For example, given the particle displacena time t and the time step dt
, the new displacement can be reformulated as:

Xn+1 = Xn+dt-V(tn, Xn) (A.12)

Formula A.12 yields a first-order approximation since othlg first derivative is in-
cluded in the calculation. The Euler method has an error démdt?. The error in-
troduced by Euler’s basic methods can be reduced by using teoms in the Taylor
series. In order to overcome the difficulty associated wim@ able to determine the
second, third, fourth and higher derivatives of the funct@ing integrated, additional
Taylor series expansions can be utilized to approximatedeeled derivatives, then the
approximated values can be substituted back into the @aligkpansion.

The second-order Runge-Kutta method utilizes an Eulerttikal step to the midpoint
of the interval and then uses the results at the mid-poinbhopdete the step. The Runge-
Kutta method is calculated as follows:

ky = dt- v(tn, Xn)
ko = dt- V(tn + 3dt, Xn+ 3Ki1) (A.13)
Xni1 =X+ 3 (ki + ko)

In order to use the expansion methods mentioned, the deewaftthe state vector is
computed as [32]
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v(t)
gX(t) _ w(tll ’("tsa(t)

T(t)

whereF (t) is the total force and(t) is the total torque acting on the body at tite

(A.14)

A.3 Contact Forces

In a typical physical simulation environment, it is necegta implement constraints that
prevent bodies from inter-penetrating as they move arobedimulation space. This is
accomplished by implementing collision detection betwelejects, and then responding
to the collision in a manner that maintains the constrai@tslision response involves the
calculations of new body states as a consequence to theiaonflithat take place. Two
commonly used approaches for implementing collision raspare: analytical methods
and non-analytical methods (also known as penalty methods)

Collision response utilizing analytical methods formatand solves Newtonian equa-
tions producing exact results. Typically, the equationgine fewer time steps than other
methods for the solution to be produced. As stated by BaHffthe disadvantage of
analytical methods stems from the difficulty involved inrfarlating and implementing
them.

Figure A.3 The penalty method utilizes the insertion of springs atdbwetact points to
force colliding bodies apart.

Instead of producing solutions to equations of motion, asvshin figure A.3, the
penalty methods relies on the insertion of temporary sgriogseparate objects at the
points of contact. The springs apply forces of equal mageitiout opposite directions
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on both objects involved in the collision. Given the sprimpstantk and the distance
between the colliding object$, the magnitude of force applied is calculated as follows:
|f| = k/d. Hence the distance between the objects and the force dppieinversely
proportional. As the separation between the two objectsedse, the resulting separating
force applied on each object increases pushing the objeats & he penalty methods for
collision response are easy to understand and implememéMao, the results produced by
the methods are not exact and are computationally expersgeeially for stiffer springs.

A.3.1 Analytical Contact Response

Suppose a collision occurs between the two bodies A and Begsdbme in contact at
timeto, let p define the contact point in world spateThe contact poinp corresponds to
the contact points on the two bodipg and p, respectively, wher@a(to) = pp(to) = p.
Let pa(to) and pp(to) be the velocity ofpa and py, at timety. The velocity values are
defined as

Pa(to) = Va(to) + wa(to) % (Pa(to) — Xa(to)) (A.15)

and

Po(to) = Vb(to) + t(to) X (Po(to) —X%s(to)) (A.16)

In order to determine the type of contact taking place, thative velocity of the
contact points must be calculated. Lt represent the relative velocity @ and py
defined as

Viel = fi(to) e (Pa(to) — Po(to)) (A.17)

Three different types of contacts may exist between two d®diepending on the
relative velocity of the contact points:

e Colliding contact: points are moving towards each otheniigd by

Vie| < —tolerance

SA typical collision might produce multiple contact pointstiveen the two bodies. Linear methods for
resolving multiple contact point simultaneously will besclissed
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e Separating contact: points are moving away from each otpeified by
Vrel > tolerance

hence no further action is required.

e Resting contact: points are at rest relative to each otigeifsd by

|Vrel| <= tolerance

A.3.2 Colliding Contacts

We start by considering a frictionless collision along thee Iconnecting the centers of
mass. Letl be the linear impulse involved in the collision, is the post-collision veloc-
ity, while v_ is the pre-collision velocityd is represented as [18]

J=m(vy—Vv_) (A.18)
The coefficient of restitutioe if represented as
e=—(Va+ —Vby)/(Va- — Vo) (A.19)

Since the impulse force acts on both bodies with the same itoagnyet opposite
directions, the following three equations are available

J = ma(Vat — Va-)
—J = Mp(Vp+ — Vp—) (A.20)
e= —(Va+ —Vbt)/(Va- — Vo)
Let Vil = (Va— — Vp—). Given the three unknowns., v, andJ, we can rearrange
the three equations to achieve the following formulaXor

J=—Vei(e+1)/(1/ma+1/my) (A.21)

Since most collisions are not frictionless and are not alttrggline connecting the
centers of mass, we expand our discussion to cover the angyalse force as well.
Givenvg as the relative velocity along the line of contact, anas the normal vector at
the contact point pointing out from the first body,is the vector from the center of mass
of the first body to the poinp, andry, is the vector from the center of mass of the second
body to the poinpy, the formula ford taking into accounts both linear and angular forces
is formulated as follows:
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J_ —Vrel(e+1)
1/ma+1/mp+n-[(raxn)/la) xra+n-[(rpxn)/lp] xra
Given the formula fod, we can calculate the post-collision linear and angulavasel
ities of the bodies involved. The linear velocities are ghldted as

(A.22)

Vat+ = Va_ + (IN)/My
Vb+ = Vp— + (—Jn)/mp (A-23)

The angular velocities are calculated as

Wa+ :(Oa——l-(l’aXJn)/Ia
Wpt = Wp— + (rp x =JINn)/lp (A.24)

A.3.3 Friction

Most collisions do not demonstrate direct impact betweerctilliding bodies, so as the
bodies come into contact, frictional forces are exertedherbiodies in a direction that is
tangential to the contacting surfaces. The frictional égrwill contribute to a change in
both the linear and angular velocities of both bodies. Theeatial forces produced by
friction is proportional to the normal force exerted on tlatact surface. Consid€ as
the friction force and, as the force normal to the surface, the coefficient of frictias
defined as
H=Fr/Fq

In addition to changing the linear velocity of the body, fiemal forces also change
the angular velocity by creating a torque on the bodies athamutenter of gravity. The
impulse force due to friction is given by

Impulse= 1 /(pr)(w; — w-) (A.25)

Finally, taking friction into consideration, the changdiimear velocity is given by

Vat =Va- + (IN+ (W)t)/ma
A.26
Vor = Vb + (3N -+ HI)t)/mp (A.26)
and the change in angular velocities of the two collidingibsds given by
(A)a+:(1)a_+<rax (Jn+<UJ)t))/|a (A27)
Wpy = Wp— + (rp X (=In+ (WI)1)) /1

wheret is a unit vector tangent to the collision surfaces.
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A.3.4 Resting Contacts

Calculating the response forces for resting contacts isiderably more complex than
the calculations for colliding contacts. The main reasanti@ complexity lies in the
fact that all contact forces have to be calculated simuiasly as one contact force might
influence the resolution at another point. The same casepjgi®s when multiple bodies
are involved in the collision yielding multiple contact pts. Figure A.4 shows four
rigid bodies producing six contact points. The collisiommals, and the centers of mass
are also shown in the figure. If all points are not processeulilsaniously, a deadlock
situation can be reached where the response engine halteas the bodies oscilates
back and forth being pushed by one contact point resolutidrtlaen the other.

My M3 Hz My
| A P, * P 7y |

Figure A.4 Four rigid bodies producing six contact points.

The simultanious processing of multiple contact pointstlwaformulated as a Linear
Complementarity Problem (LCP), which revolves around figda solution to a linear
system satisfying specific inequality constraints. Giveart x n matrix M and the n-
vectorq, an LCP presents the problems of calculating values for éhiablesz;, 2o, .., z,
andwsi, W, .., W, such that [26]

W1 21
Wo Vip)

Sl=m| T |49 (A.28)
Wh Zn

The following list presents the steps to be followed for Hargdcollisions producing
multiple contact points[33]:
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1. The collision detection engine produces data for all acinpoints present at the
current state of the system.

2. The contact points are pre-processed for formulationlasesar Complementarity
Problem.

3. The LCP solver produces a system solution guaranteeagdkpenetration con-
straint.

4. The post-collision velocities are calculated based endisults of the LCP solver.

5. The differential equation solver calculates the newestattor for each body within
the simulation.

(o2}

. Repeat for the next timestep.

A.4 Joint Constraints

In order to create a complex articulated structure out afifigpdy components, a con-
nection mechanism is needed that allows for the creatiomiotslthat hold the bodies
together through the enforcing of different types of coaistis. Similar to the impulses
generated to enforce non-penetration constraints, irepwan be introduced to limit the
relative motion of bodies. Schmitt [115] introduces a meltiar conserving joint con-

straints through the application of continous position anéntation correcting pulses.
Schmitt’s algorithm offers a simpler approach to conseywonstraints, as it does not
require solutions to complex differencial equations (FFeg8.5).

titne £ (before cotrection) titve f+h (after correctiom)

. ”
Fa

Ha

2

Figure A.5 Joint correction forces to conserve joint constraints.
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Given the two bodies andB connected via a ball-and-socket joint. The pojgsind
Py represents the anchor points on the two bodies, and thegoitraint is to keep the
two anchor points within tolerance distance of each otherth® two points slide apart
due to forces being exerted on the bodies, a corrective sedolce has to be applied to
pull the bodies back together.

The impulse forces are calculated to reduce the distanegebatp,; and py to zero
at timet +h. The velocity changes of A and B must equal the separatingrdisd
divided by the time step size h. The corrective impulses earonputed accordingly and
applied to the system at tintaén order to achieve a consistent system at ttmeh. For
multiple joints, the process must repeat iteratively uglticonstraints within the system
are satisfied.

In addition to the method presented, Lagrange multiplietgacalso be used to solve
for the motion of bodies connected by joints. A discussiosusth a solution is presented
by Baker [119].

Hinge Joitt

Anichor Body B

Ball and sacket Jaoint

Anchor Bady B

Figure A.6 Hinge as well as ball-and-socket joint constraints cotingdhe two bodies
A and B.

In order to create the desired articulated structures,ithelation engine, at a mini-
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mum, must have support for two different types of Joints. flilséis a hinge joint offering
a single degree of freedom about the hinge axis, and the desarball-and-socket joint
offering three degrees of freedom. Both types of joints hoevs in figure A.6[124]. The
different joints may be used to simulate different conrattypes within the structure.
For example, in the simulation of a biped robot, a hinge joiay be used to simulate
the elbow and knee, while a ball-and-socket joint may be tsednulate the shoulder or
hip.

The efficient utilization of joint constraints would allowrfthe simulation of any type
of articulated structure. Ropes and fabric may be simul#tesugh the placement of
proper joints and relaxing the corrective impulses to sateispring-like behavior at the
contact points producing stretching. The simulation ofduis also feasible using the
same system by structuring a mesh of bodies connected byamalsocket joints and
formulating a model governing the different fluid forces gradticle motion. Cohesion
forces may also be simulated with the inclusion of breakimggshholds at which the
particles lose their connectivity.



Appendix B

AGENT AWARENESS AND PLANNING

B.1 Situation Awareness

Situation awareness revolves around the accurate pevoegtboth the internal and ex-
ternal environments of an agent and understanding the eélihe perceived information
presently as well as for future planning. The notiorfavard thinkingallows a robotic
agent to prepare for future events based on proactive arujtory actions [125]. Being
fully aware of the current state is closely coupled with aerag ability to create goals
and execute goal-based strategies. An agent operatingeial-avorld environment will
be compelled to autonomously create and follow its own gaslhe environment could
neither be modelled correctly nor completely in advancg.[98us, the dynamic cre-
ation, re-prioritization and effective management of gdmcome an essential element in
robotic control. The more aware an agent is of its envirorintea more it can effectively
manage its goal vector. Two main types of goals motivatetrbbbavior:

e Reactive goalsire created in response to changes in the belief systenmgetat
the environment. In essence, such goals are created ooyglesinased on environ-
mental changes that take place, and they are the basic mgcisapehind belief,
desire, and intention (BDI) principles [43].

e Proactive goalsare created in relation to future prediction of the envirentrand
the effect of such changes on the agent. For example, an sggsihg a movement
towards a state of being off-balance will proactively agpeio correct the situation
by planning and applying corrective measures.

As the level of complexity of the agent and the environmeataases, the associated
interactivity also increases making the accurate pereemif the current situation more
difficult. Consequently, the creation of reactive or progcgoals in real-time become a
significant challenge. Several first and second order lbfymaeworks have been created
to formalize the expression of states in a general senseheliiollowing sections, we
will discuss existing situation and state management fraonks identifying the main
components, advantages, and disadvantages of each.

170
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B.2 Situation Calculus

Situation calculus (SC) was introduced by McCarthy and 144§6] as a logical formal-
ism for the structured representation of information ietato dynamic environments.
Several versions of the situational calculus have beeaseteover the years, but the core
principles remain the same. A situation may represent assioawf the world at some
instant in time [87] or a history of all states and events ilegdip to an instant in time
[111]. Either of the two approaches acknowledges the impitisg of representing a sit-
uation in its entirety. Hence, a situation is an approxiorathat aims to offer valuable
information about the state of the world. The following aceng of the key features of
the situation calculus as described by Reiter [111]:

e SCis a second order logic formal language intended to mbedbyical structures
as well as the changes that take place in dynamic worlds.

e SC currently views a situation as a history of actions leguttra particular situation
starting at the initial situatiofy.

e Fluents are used to describe the state of the world in eachtisih.

e Actions are objects of the domain of discourse that promphgbs to the state of
world objects.

B.2.1 SC Semantics

Situation calculus, as defined by Levesque, Pirri and RE#ruses the usual definitions
of the standard alphabet of logical symbols, including andd. The following alphabet
is also utilized:

e The predicate symbalo(action situation) denotes the resulting situation after per-
forming a specific action. The predicade(a,s) denotes the state produced after
performing actiora in situations.

e The predicate symbat (situation situation) defines the sequencing of situation
occurrence. For exampla,C b means that a occurred before b; i.e. a belongs to
the history of b.

e The predicate symbdtosgaction situation denotes the executability of an action
in a particular situationPosga, s) signifies the possibility of performing actian
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in situations. The statement
Posgstefda),s) = U pright(a,s) A Balanceda, s)
denotes that the ability to step is dependant on being ufpaigh balanced.

In addition to the alphabet mentioned, action functionsadse utilized to define ac-
tions on objects in a particular situation. Relational andctional fluents are also in-
cluded and will be explained in the next section.

B.2.2 Fluents

A fluent represents a system entity whose value may be alteerdtime. Fluents may
represent numerical parameters whose value is subjectitdiga, or a proposition whose
truth value might be changed as the system transitions frarsiduation to another. Flu-
ents are often treated as functions to represent dynantedhout certain objects within
the environment. For example, given the two fluehtndg relating to the environment
objectx

f(x,8) AQ(X,S)

asserts the status win relation to bothf andg at situatiors.

Fluents are always expressed in relation to a particulaatin. Several methods may
be used to describe the association between a fluent andaaitLso given the operation
op

(fopg(s) = f(s)opgs)

In certain instances, the situation specification may bemagsed in fluent expression
producing a fluent that could be applied to any relevant sanaFor example, given the
fluenteqdenoting the following equality,

Xy, z(eqx,y) Aeqy,z) — eqXx, z)),

we dan deduce that the inequelity applies to any implicitagibns, and the given transi-
tive law holds.

Action fluentsare utilized to define situation specific relationships agojects. For
examplepccupiedx, s) signifies that the objectis occupied in situatios. On the other
hand,functional fluentsare used to denote situation specific functions, fikex,s) or
valuey,s) for example.
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B.2.3 Effect and Successor Axioms

Given the ageng, the situations, and the actioro, the fluentresult(a, o,s) represents
the resultant situation after executes actiow in s. Actions may have effects on sys-
tem fluents and effect axioms are used to model such effedts. fdllowing example
demonstrates the structuring of effect axioms.

Given the two boxes andb and the item, we use the following fluent to describe
the location of as well as the status of bdx

Empty(b,s) boxis vacant in situatios

InBox(i,b,s) itemi is in boxb in situations.

The following fluent is used to describe the transitiom fsbm one box to another:
Move(i,b) move item to boxb.

The resultant state after applying thlove(i, b) action in situatiors is given by

ResultMovei, b),s)
and the effect axiom foMove(i, b) is given by

Vs, i, b, InBox(i, b, Resul{Move(i, b),s)))

As we add more effect axioms for different actions within émgironment, we start to
realize that effect axioms allows for describing the eBexftactions but not for describing
the parts of the system that remain unchanged. For exangihg the effect axiom listed
above, moving from box A to box B would cause InBox(i,B,Result(Move(i,B),s)) to
hold, however, given the existence of another fipxhe effect axiom does not convey
any information about the value of fluents in regard€tarhis inability to handle non-
effects is called th&ame problem

The most efficient solution to the frame problem revolvesiatbreplacing the effect
axioms with a single successor state axiom for each fluenteXxample, the successor
axiom forInBox(i, b, s) is as follows:

Vs, a,i,b(InBox(i, b, Resulta,s)) <
((InBox(i, b, s) A—Ja= (Move(i, bg,s) Ab# b)) vV (-InBox(i, b, s) AJa= Movei, b,s)))

The previous axiom signifies that itemwould be classified as being in bdxin
situationResul{a, s) if and only if either of the following takes place:
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e Itemi was already in bok in situations and was not moved elsewhere, or
e Iltemi was not in boxb in situations and was then moved to

Using successor axioms allows for specifying the valuesugms in relation to all
previous actions that might affect them. In addition, it ces the requirement for having
to specify the values for all fluents, including those whoehawt changed. The integrity
of the system is increased in that manner as the possibfliynitting the inclusion of
one or more axioms does exist.

Once the axiomization of the system is complete, an ageniidhie able to deduce
the resultant state reached after executing a series @inactPlanning is also feasible,
as the agent is able to strategize a series of actions thdtdwesult in a particular sit-
uation. However, there are some limitations to the situmatialculus that makes using
it in dynamic robotic controller environments difficult. IFexample, situation calculus,
as presented by McCarthy, does not include constructs &mifying concurrent actions
or actions of a continuous nature. In addition, actionsesgnting complex behaviors
as well as their resultant states would be quite difficultriplement using the given
methodologies.

B.3 Fluent Calculus

Fluent calculus was created with the purpose of providirtebenechanisms for spec-
ifying non-effects of actions as well as the ability to inteese non-effects [129]. In
Fluent calculus, situations are considered as represamadf states. The inferential
frame problem is addressed by utilizing universal statgatg axioms that specify how
an action modifies a state. This approach is based on theat&ficof primitive fluents
into successor state axioms. A fully mechanical method éoivihg state update axioms
from an initial arbitrary grouping of effect axioms is prased [130]. Fluent calculus uti-
lizes the key idea of combining multiple effect axioms intsirrgle one. The result would
be a more complex axiom that still only specifies effects,itygould contain sufficient
information regarding objects within the system not atéedby an action.

Given the fluenf(X) and a finite set of actions relevant toF (X), y¢ (X,a,s) would
specify all circumstances that would calSg) to become true in s. Similarlyg (X, a,s)
would describe all circumstances causi(@) to become false. A general form successor
state axiom is given to describe the dependence of the vdliean its value in the
previous situation as well as the effect of the action pentx.
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The following successor state axiom describes the effegt aihdy™ onF:
F(X,Do(a,s)) = V¢ (X,a,9) V [F(X,5) Ayt (X a,9)]

Although this approach effectively addresses the reptasenal frame problem, ad-
dressing the inferential aspect requires an alternativa & successor state axiom where
actions are the main components of the system and not fluBgitseversing the repre-
sentational model, we may specify the affect of each actiothe values of fluents. Let
A(X) represent an action of interest. We may use the forip(&, f,s) to specify condi-
tions such thaf is a positive effect of performing(X). Similarly, y, (X, f,s) represents
conditions such that is a negative effect of performinyX).

The complete account of fluents that hold in situases given by

holdg f,Do(a(x),s)) = y (X, f,5) v [holds( f,) A ~yx (%, f,9)]

B.3.1 Mechanical Axiomization

Automating the transition from effect axioms to successatesaxioms would be quite
beneficial. This would allow for the system logic to deduce tion-effects of actions
utilizing known effects. The mechanical axiomization prss offered by the fluent cal-
culus operates under the assumption that the effect axioms gonstitute a complete set
of effects. The presence of indirect effects gives rise édRmification ProblemSuch
indirect effects exist through environment state constsavhich impose certain circum-
stances that are not directly specified. Causal propaggi8j approaches are the most
general approaches used to address the Ramification Pr{t3éin

B.4 Probabilistic Situation Calculus

Probabilistic Situation Calculus (PSC) was created to leadighamic knowledge relating
to worlds in which actions have uncertain results [85]. Wienoutcome of a particular
action is not certain, the transition from one state to amogoes beyond the capabili-
ties of current representations of the situation calcidsssuch representations only deal
with discrete state transitions where the effects of astame known. PSC operates un-
der the assumption that, in a realistic environment, thelres a particular action may
only be probabilistically approximated, hence, this fraraek was created to handle the
complexity of such probabilistic distributions. This taskaccomplished through the in-
clusionprobabilistic temporal projectionwhich revolves around the prediction of world
changes that might take place as a group of actions, or aiplpat into effect [89].
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PSC deviates from traditional situation calculus methaasspecifying action pre-
conditions by partitioning them into the following two cooments:

e Preconditions for inputs, which are analogous to the sdnatalculus precondi-
tions.

e Probability distribution for the reactions resulting frahe processing of an input.

B.4.1 Induction Axioms

Several foundational axioms are used in PSC based on thetiadaxioms introduced
by reiter [112]. The first is an existence axiom which stales the initial situatiory is
in the path for reaching any other situation. The existexeanais stated as follows:

(V0)-0(S0) A (Va,s)[9(s) D ¢(do(a,s))] 2 (V9)d(s). (B.1)

This axiom is comparable to the induction axiom for naturahiers:

(V6)-0(0) A (vX)[9(X) D d(sucex))] D (VX)¢(x).

The next axiom relates to the reachability of situationgfi@her situations. Sinc®
is the initial state, it does not have any other state in g#olny, hence

(Vs)—sC . (B.2)

The C operator is used for state ordering. The interpretatioafs’ is that states
is in the history of statef, which means that sta& could be reached from stassby
applying some set of actions.

The name uniqueness axiom is stated as:

do(as,s1) =do(ay, ) Dar =@ A8 =S, (B.3)

which means that each action applied in a situation must Aaveque name identifier.
PSC also introduces thegal predicate which identifies the status of situations after

the execution of actions that are not possible in a particitaation. If an illegal action

is executed, the holding value of fluents remains the same. akiom is presented as

follows:

-legal(do(a,s)) D (Vf)holdg f,s) = holdg f,do(a,s)). (B.4)
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B.4.2 Cumulative Distribution

In order to operate over a domain of uncertain reactionspautative distribution func-
tion, denoted as c(i,s), is used, wherepresents the input in situatien The following
cumulative distribution axioms are used:

Jim c(i.9)(0 =1 (85
Jim_c(i.5)(x) =0 (B.6)

x<y 2 eli. 09 < cli. ), ®.7
im c(.9)() = c(i.5) (9. (B9

The probability that the fluent holds after a particular inputis given in situatiors
is given by the predicatprob where

prob(f,i,s) :/+w¢(holds(f,do(<i,x>,s)))c(i,s)(dx). (B.9)

—00

whered(x) = 1if xistrue, and¢(x) = 0 if xis false

The PSC also includes support for cases where multiple snpartribute to a particu-
lar reaction. The formulation is based oRandomly Reactive Automatéhe reasoning

mechanism is extended to allow for multivariate reactiopgxtending the language of
the situation calculus.

B.4.3 Expansion of the Situation Calculus

The frameworks presented in this chapter for the formal rijgsen of situations offer
methodologies based on first and second order logic. Howiemeir current state, none
of the frameworks presented address the complexities ohautous agent design, spe-
cially in the presence of articulated structure controle Shiuation calculus operates on a
system of deterministic actions and states where the carsegs of events and actions
are well defined. Fluent calculus, as well as event calcidlisw the same general struc-
ture as that of the situation calculus with the addition aistoucts for the description of
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non-effects. Probabilistic situation calculus introdsitiee element of system uncertainty
yet only in relation to the effects of well defined system itgou

A formal state determination system for autonomous awied agents must include
the ability to describe the dynamic and uncertain naturectibas, reactions as well as
state memberships. In order to expand current methodadgiallow for the compre-
hensive depiction of agent state, the following elementstrbe incorporated:

e Determination of the agent’s internal state vector descrityy the articulation status
at a given moment in time. The determination system must biged to handle
agent parameters whose values are presented on a contsuabels

e Determination of the agent’s external state vector desdriy the environment
state vector as well as the interactivity vector betweeratient and the environ-
ment. The determination system must be designed to handi®ement parame-
ters whose values are presented on a continuous scale.

e The management of agent goals based on current system stégeiggent’s goal
vector will be constantly changing depending on the cursgaius of the agent as
well as the priority values of long-term and short-term gpab the management
system must incorporate support for the dynamic re-przation of goals.

Due to the dynamic nature of system interactivity, an agantle described as being
in multiple states at the same moment in time. For exampleagamt will never be
in an absolute state of being balanced or an absolute stdieid off-balance. State
membership levels must be incorporated to describe thengelgness of the agent to
different simultaneous states.

B.5 Rational Agents

The efficient control of robotic agents requires a level ¢ibraal behavior where knowl-
edge of the environment maximizes the agent’s chances tev&cbuccessful results. A
rational agent would be required to maximize its perforneameasures by using its past
experiences, current information available, as well aseturactions available in the cur-
rent situation. The design of an autonomous robotic agetrélies on rational decision
making requires the existence of a framework for the modeadinagent perceptions, as
well as short-term and long-term goals.
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The Belief-Desire-Intention (BDI) model was developed bathan [19] as a frame-
work for practical reasoning. The BDI model has come to besipbsthe best known
and most studied platform for practical reasoning agentp [s shown in Figure B.1, A
BDI system consists of the following main units:

e Beliefs The agent belief system revolves around its perceptioheg&nvironment
and itself at a given point in time. Beliefs represent thenéigecollective knowl-
edge of the world achieved through sensors, inputs andipps@ductive reason-
ing. An agent could have different levels of certainty abeacth of its beliefs.
As beliefs possibly represent imperfect information, adhee to belief logics is
essential even though the computational representatigmotebe logical [44].

e Desires Agent goals are represented as desires for achievingrcstées or tasks.
Desires may be immediate representing short-term goalkhegrcould represent
a structured agenda including long-term goals. Desires Imaag priority levels
attached to them to signify the urgency of the associatetsgoa

e Intentions Once an agent commits to a particular goal, the goal becamésten-
tion that the agent is working towards materializing. Arelhgent system would
weigh the priorities of goals on the agenda then commit tdsgibeat seem appro-
priate at a given point in time.

e Actions An agent must utilize feasible actions in order to achievalg it has
committed to. The feasibility of actions differs from on&usition to the next, so a
dynamic feasibility evaluation must be performed to decidéhe most appropriate
plan of action that would constitute the most efficient metfay achieving the goal.

An agent would also be required to handle the causality &sacwith the execu-
tion of actions. In an uncertain environment, the outcomaations may not be fully
determined until an action, or part of it, has taken placendde mechanisms are needed
for handling the error associated with the execution ofomsti Furthermore, intelligent
monitoring is needed in order to compensate for error bpildtile the action is being
executed by possibly making dynamic changes to the action.

An essential part of effective planning is the ability toplen when necessary. Al-
though a particular plan of action might be the most appeterat a particular point in
time, it might not be a time step later. The commitment to digalar action will need
to be dynamic within itself. Although a belief might existatha specific action would
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Input
BELIEFS
DESIRES INTERTIORNS
Action

Figure B.1 The belief-desire-intention model.

yield a specific result, the system offers no guarantee ofdkaltant state of any ac-

tion. An agent should be able to detect when an intendedtrgseiins to be unachievable
given the current action plan. Re-planning could then td&egitaking into consideration

knowledge of the previous failure in order to create an aéBve course of action.

B.5.1 BDI Relationships

Rao and Georgeff [108] describe the relationship betweéafbedesires and intentions
as that of consistency. An agent should have convictioretgatl is achievable in order to
classify it as a goal. This property is calleghlismas described by Cohen and Levesque
[27]. The world consistency requirement is stated as fatow

vb3g,gC b
vgdi,icg

This means that given the belief-accessible worldosetgoal-accessible world sgt
must exist that is a sub-world bfat timet. Similarly, for each goal-accessible world set
g, an intention-accessible world setust exist that is a sub-world gfat timet. The fact
that each belief-accessible world must have an associaieagcessible world does not

imply that the reverse must also hold. Belief in the inevitgbof a particular fact need
not translate to a goal to achieve that fact [108].
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Given the desird and potential side-effestas shown in Figure B.2, an agent believes
that by executing any of the two actioa% or a2, d will be fulfilled with the potential
occurrence ofs as well. Actiona3 is an alternate course of action causing the non-
fulfillment of d guaranteeing also thatwill not occur. The figure shows two of the
possible goal-accessible worlgs andg2 associated with the belief-accessible wdxld
The two intention-accessible worldsandi2 associated witlgl andg2 are also shown.
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Figure B.2 The relationship between belief, goal, and intentioneasible worlds. The
symbolsal, a2, anda3 represent three possible actions. The syndb@presents a par-
ticular desire, whilesrepresents a possible side-effect.

The Computation Tree Logic (CTL), presented by Emerson amdv@san [35], is a
propositional branching-time logic utilized for prograsasoning. Here, we follow the
CTL utilization as extended by Rao and Georgeff [108] for pluepose of describing
a first-order variant of the logic. The following sectionggent the constructs defined
in [108] for describing the relationships between worlditesg as well as for system
axiomization.



APPENDIX B. AGENT AWARENESS AND PLANNING 182

B.5.2 World Semantics

World semantics are presented using the following elements

e W is a set of worlds.

E is a set of primitive events that could take place in a paldicworld.

T is a set of time points to be related to the existence of wanfdhe time line.

T defines a binary relation between elements and time points.

e B, G andl represent mapping between the current situation and th&'sget of
beliefs, goals and intentions respectively.

e R"is used to denote the set of worlds accessible fnoat timet.

¢ U defines the universe of discourse, andefines the mapping of entities lth for
a given world at a specific point in time.

e Each worldw is represented by the tugl&y, tw, Sw, Fw), whereT,, is a set of time
points such thaty, C T, andty is a subset of restricted to time points ifly. Sy
represents successful occurrence of events between atljage points, whileRy
represents failure of those events.

e The sub-worldv is defined as a sub-tree of the wovidienoted by C w.

In addition to the elements listed, the modal operaBi$, GOALandINTENDare
used creating a first-order logic framework for the formgresentation of world states.
The formulation given is later used to define system axiotiina

B.5.3 Semantics of Events

Events include actions used by an agent to achieve goalsnt&€tansform the agent
environment along the time line according to the time poatfls The evene might or
might not be successfully executed denotedsbyceede) or failed(e) respectively.
The predicatelonde) represents an attempt at executing eventhe three predicates
are defined as follows:
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succeede(®) iff 3to, Sy(to,t1) =€
failed(e) iff Jto, Fw(to,t1) =€

don€e) = succeedefk) v failed(e)

B.5.4 BDI Compatibility

Since in order for a goal to exist, it must stem from an exgtielief, each identified
goal must have an associated belief-accessible worlddgddiit. This compatibility is
formalized using the following axiom:

GOAL(a) D BEL(a).

The same compatibility applies for goals leading to intemgi Hence, each identified
intention must stem from a goal-accessible world. The axabgoal-intention compati-
bility is given by:

INTEND(a) D GOAL(a).

In order for the entire system to progress forward, intergimust be transformed into
actions that may or may not succeed. Such transformatiagngfisd by a commitment
on the part of an agent to a particular intention. The axiommi@ntion to action is given

by:

INTEND(doege)) D doege).

In addition to the BDI formalization discussed , the framekvalso offers catego-
rization of agent commitment strategies as it relates fomat agents. Although beyond
the scope of this overview, the framework also offers addél axioms, propositions and
theorems that assist in describing the inevitability ofatt and side effects as well as
the success or failure of actions attempted by an agent. fmra detailed discussion of
the framework, refer to [108].

B.6 Summary

In this chapter, we discussed several platforms for thergetgm of agent situations as
well as the relationships between different agent compisnewe have also described



APPENDIX B. AGENT AWARENESS AND PLANNING 184

the Rao and Georgeff [108] framework for the formal représigon of the belief-desire-
intention model. The framework offers a significant logir@mework for formulating
the transition of knowledge about the agent’s environmetat actions that change the
environment.

Although the logical foundations of the situation calcuaswell as BDI are quite
significant, more work will still have to be done to bridge thep between theory and
applications [109]. The situation calculus does not prewvide constructs needed for
the dynamic control of articulated structures, while a gigant criticism of the BDI
model is that it is not appropriate for modeling various typé&behaviors. For example,
both frameworks do not include constructs for building eyst that rely on learning and
adaptation in their behavioral patterns. This is a crugiet,missing, component needed
for the creation of autonomous robotic controllers.
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